
International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

6

Design and Performance Evaluation of Median

Range Scheduling Algorithm

Jainil Vachhani
School of Engineering and Applied Sciences,

Ahmedabad University
Ahmedabad, India 380009

Yash Turakhia
School of Engineering and Applied Sciences,

Ahmedabad University
 Ahmedabad, India 380009

ABSTRACT

Disk system performance can be dramatically improved by

dynamically scheduling, ordering and pending requests. Past

analysis of disk scheduling algorithms has to largely

experimental with little effort to develop algorithms with

measurable performance guarantees. In this paper, the authors

propose an algorithm that reduces average seek time. Then the

proposed algorithm is compared with conventional scheduling

algorithm and measurable evidence is provided for the same.

Our results and calculations show that the proposed algorithm

will improve the performance of the disk by reducing average

seek time and thereby providing a faster disk subsystem

Keywords

Operating System, Scheduling Algorithm, Optimization.

1. INTRODUCTION
In operating systems, many processes simultaneously generate

read/write request for disk records and sometimes the

processes make requests faster than they are serviced by

moving head which results in queues being build up for

devices. Disk scheduling technique is the process of allocating

these requests such that it minimizes head movement and

provides least seek time. According to, [1] incorporating

information into scheduler provides less than 2% delay while

algorithms that reduce overall position delays can provide

significant performance improvement by exploiting a

perfecting cache.

A set of evaluation criteria for any disk scheduling algorithm

is established as follows: [2]

 Seek Time: Total time taken by disk arm to move to

head of cylinder.

 Rotational Delay: Additional delay for the disk to

reach the desired section of the head.

 Disk Bandwidth: Total information, measured in

bytes, transferred between first request and

completion of the last request.

 Transfer Time: Time required for transfer,

depending on rotational speed.

Section 2 describes few of the most conventional disk

scheduling algorithms. Section 3 provides a detailed

description of the Median range algorithm. In section 4, the

proposed algorithm is compared with traditional disk

scheduling algorithm on randomized data sets. Section 5

summarizes this work and suggests avenues for future

research. Related work in this field can be found at [3] and

[4].

2. CONVENTIONAL SCHEDULING

ALGORITHM
The following are the few well known conventional

scheduling algorithms: [5].

2.1 First in First Out (FIFO)

This algorithm serves the requests in the manner of their

arrival. The first request is queued and served first and so on.

The farther the location of the request, the higher the seek

time will be.

2.2 Shortest Seek Time First (SSTF)

In this algorithm, the read write head moves to the track

nearest to the head position. The request requiring minimum

seek time is served first and so on.

2.3 SCAN

In this algorithm, the disk head moves in a particular direction

serving all the requests and after reaching the end of the disk

reverses its direction serving all the requests.

2.4 LOOK

In this algorithm, the head moves in a particular direction,

serving the request, reaches the last request and then reverses

its direction.

2.5 CSCAN

In this scheduling algorithm, the head moves in a particular

direction, serving the requests and after reaching the end,

jumps in opposite direction, without serving any requests and

then reverses its direction until all the requests are served.

3. MEDIAN RANGE SCHEDULING

ALGORITHM
The main aim of this algorithm is to reduce the seek time by

minimizing the number of head movement. In this algorithm,

the requests are sorted and then if the head pointer is in the

median range then the query having the least seek time of the

median range is served first and then the algorithm proceeds

to serve the next nearest requests. If the head pointer is not in

median range then, the first or last request, whichever requires

less seek time is served first and then the algorithm proceeds

to serve the requests in ascending or descending order. The

median range scheduling (MRSA) is defined as follows

3.1 Algorithm
1. Declaration and Initialization

A[]: A list containing all the requests to be

served.

HP: Head Position.

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

7

n: Number of requests to be served.

MR[]: List containing MR(Median Range)

lowMR: First element of MR[]

highMR: Last element of MR[]

LST: The element having least difference from

HP: Head Pointer

LST(i): The array index corresponding to

LST: LowestSeek Time value

2. Sort(A)

3. if(n is odd)

else

4. if

serve LST

j = LST(i)

while(j is not 0)

serve A[j]

j = j - 1

j = LST(i+1)

while(j is not n)

serve A[j]

j = j + 1

5. else if

for(j=0 to n-1)

serve(A[j])

else if (HP _ highMR)

for(j=n-1 to 0)

serve(A[j])

4. RESULT AND PERFORMANCE

ANALYSIS

4.1 Performance Assumptions and

Parameters
All requests are independent of each other and have the same

priority. The requests are initially stored in a request queue

and. all cases are considered ideal in nature. The performance

based on minimum seek time i.e. average seek time should be

less for better performance.

4.2 Performance Evaluation

Suppose a disk drive has 200 cylinders, numbered as 0 to 199.

Consider a disk queue with requests: 190, 75, 155, 25, 85,

130, and 120 for I/O to blocks on cylinder. Assume the R/W

head is at 100.

Disk Drive: 200 cylinders

Sequence: 190, 75, 155, 25, 85, 130, and 120

R/W arm: 100

Total head movement is given as follows:

Fig 1: FIFO

FIFO = 190 - 100) + (190 – 75) + (155 – 75) + (155 - 25) +

(85 - 25) + (130 – 85) + (130 – 120) = 530

Fig 2: SSTF

SSTF = (100 – 85) + (85 – 75) + (120 – 75) + (130 - 120) +

(155 – 130) + (190 – 155) + (190 – 25) = 310

Fig 3: SCAN

SCAN = (100 – 85) + (85 – 75) + (75 – 25) + (25 - 0) + (120 -

0) + (130 – 120) + (155 – 130) + (190 – 155) = 305

Fig 4: LOOK
LOOK = (100 – 85) + (85 – 75) + (75 – 25) + (190 - 25) +

(190 – 155) + (155 – 130) + (130 – 120) = 315

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.4, August 2017

8

Fig 5: CSCAN
CSCAN = (100 – 85) + (85 – 75) + (75 – 25) + (25 - 0) +

(120 - 0) + (130 – 120) + (155 – 130) + (190 – 155) = 290

Fig 6: MRSA

MRSA = (100 – 25) + (75 – 25) + (85 – 75) + (120 - 85) +

(130 – 120) + (155 – 130) + (190 – 155) = 240

Fig 7: Total Head Movement

Fig 8: Average Seek Time

It is observed from above experiment that MRSA is better

than traditional scheduling algorithms. There are following

advantages of using MRSA:

1. The total disk movement is always less than 2N

where N is the position of last track.

2. If all requests are concentrated near median, then it

provides best results.

3. The algorithm is simple and easy to follow.

5. CONCLUSION
In this paper, the authors proposed and implemented a new

disk scheduling algorithm that works better than conventional

scheduling algorithms and imposes almost no performance

penalty when provided with sufficient slack time. The average

seek time and transfer time has been improved which in turn

improves the performance of disk. This algorithm can be

implemented on real time system and has applications, in the

fields of operating systems, distributed computing,

heterogeneous systems, cluster computing, computational

models and multi criteria analysis.

6. REFERENCES
[1] B. L. Worthington, G. R. Ganger, and Y. N. Patt,

“Scheduling algorithms for modern disk drives,” in ACM

SIGMETRICS Performance Evaluation Review, vol. 22,

no. 1. ACM, 1994, pp. 241–251.

[2] M. M. Kumar and B. R. Rajendra, “An improved

approach to maximize the performance of disk

scheduling algorithm by minimizing the head movement

and seek time using sort mid current comparison (smcc)

algorithm,” Procedia Computer Science, vol. 57, pp.

222–231, 2015.

[3] W. Basu and S. Chaudhuri, “Missed deadlines should be

consideredproposals for modifying existing real-time

disk scheduling algorithms,” International Journal of

Advanced Research in Computer Science, vol. 7, no. 3,

2016.

[4] M. Lee, “A disk scheduling algorithms based on the

insertion and two-way scan techniques,” International

Information Institute (Tokyo). Information, vol. 19, no.

5, p. 1565, 2016.

[5] M. Y. Javed and I. Khan, “Simulation and performance

comparison of four disk scheduling algorithms,” in

TENCON 2000. Proceedings, vol. 2. IEEE, 2000, pp.

10–15.

IJCATM : www.ijcaonline.org

