
International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.7, August 2017

7

Approach for Minimization of Test Cases from Decision

Table Generated from Cause Effect Graph

Monika Agrawal
Assistant Professor, Arya Group of Collages

Kukas- Rajasthan

Usha Badhera, PhD
Assistant Professor, Banasthali Vidyapith.

Jaipur, Rajasthan

ABSTRACT
Cause effect Graph focuses on modeling dependency

relationships among input conditions of program known as

causes, and output conditions known as, effects. The

relationship among input conditions and output conditions is

expressed pictorially in terms of cause-effect graph. Cause

effect Graph is basically hardware-testing technique adapted

to software testing by researchers. This paper proposes the

details about the techniques to generate test cases from given

cause-effect graph. The objective of this paper is to get the

minimum number of test cases to find maximum errors.

Keywords
Input, output, effects, test cases, errors, cause, cause effect

graph.

1. INTRODUCTION
Testing involves set of operation carried out to assess some

prospect of a piece of software; Software testing is a process

of executing programs to detect faults. The quality of software

can be assured by effective testing. The primary goal of

software testing is to identify that software confirm to the

requirements. Testing is designed to check if the system

behaves as desired, which gives confidence about the

correctness of software. In present scenario, society is

gradually becoming dependent on software. The complexity

of the software has grown, and the constraints of budget and

time on software development process have increased. These

three factors complexity, cost and time made it practically

impossible to guarantee that software is perfect. To reduce

cost and time of testing , it is required to generate less number

of test cases which has more chances of finding errors. In this

study one of the Black box Testing technique, Cause Effect

graph is considered to generate fewer test cases with high

probability of finding errors.

Preliminary and Previous work Cause-Effect Graphing is

basically a hardware testing technique adapted to software

testing by Elmendorf [1973] and further developed by

Nursimulu et al. [1995] Myers [1979], Myers et al. [2011],

Tai [1993] and Paradkar et al.[1997]. It focuses on modeling

dependency relationships among program input conditions

known as causes, and output conditions known as, effects.

The relationship is expressed visually in terms of cause-effect

graph. The graph is a visual representation of logical

relationship among inputs and outputs that can be expressed

as a Boolean expression. One approach to test generation was

to consider all possible combinations of causes of the CEG,

which is exhaustive in nature but impractical as the test cases

generated are exponential function of number of causes in the

CEG. A practical test generation algorithm for CEGs was

described by Myers [1979] which is referred to as algorithm

CEG_Myers. Strengths and weaknesses of Myers approach

have been investigated by Nursimulu et al. [1995]. Myers

process of creating decision table is inconsistent and

ambiguous, other researchers Mathur [2008] and Srivastava et

al. [2009] have given algorithm for creating decision table

from cause effect graph for generation of test cases.

Table 1. Notations for Cause Effect Graph

Notation Definition For making e true

C implies e

C e

1 1

C not implies

e

C e

0 1

e when c1

and c2 and c3

C1 C2 C3 e

1 1 1 1

e when c1 or

c2

C1 C2 e

0 1 1

1 0 1

1 1 1

Table 2. Constraint symbol

Constraint

Symbol

Definition Table

The “E”(Exclusive)

constraint states that only

one of the causes X and

Y can be true.

X Y

0 0

0 1

1 0

e C

X

Y

E

V

C

1

C

2

e

C e

C

1

C

2
e

^

C

3

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.7, August 2017

8

The “I” (Inclusive (at

least one)) constraint

states that at least one of

the causes X, Y and Z

must always be true (X,

Y and Z cannot be false

simultaneously).

X Y Z

1 1 1

1 0 0

0 1 0

0 0 1

The “O”(One and Only

One) constraint states

that one and only one of

the causes X and Y can

be true.

X Y

0 1

1 0

The “R”(Requires)

constraint states that for

cause X to be true, than

cause Y must be true. In

other words, it is

impossible for cause X to

be true and cause Y to be

false.

X Y

1 1

0 0

2. PROPOSED APPROACH FOR

GENERATING TEST CASES

Figure 1. Flow Chart for generation of test cases

Proposed algorithm: Procedure for generating a decision

table from cause-effect a graph.

Input: (a) A template containing causes C
1
, C2…C

a,
effects

Ef
1
, Ef2... Efb, their relationship & constraint.

Output: A decision table DT containing N=a + b rows and M

columns, where M depends on the relationship between the

causes and effects as captured in the cause-effect graph.

Procedure:[Figure 1] DT_FROM_CEG & initialize DT to

an empty decision table.

Step1: Analyze the causes & effects from the given cause-

effect graph.

Step2: Execute following steps for i = 1 to b.

 2.1- Select the next effect to be processed, Let e =

Efi.

2.2- Get the combination of Causes (C1,C2,...etc.)

such that effect e to be true[Table 1].

2.3- Apply all the constraints and remove infeasible

test cases[Table 2].

2.4- Add these changes to the individual decision

table.

Step3: Merge all individual decision table to final decision

table:-

if (an effect is independent of some set of causes i.e

some set of causes have no impact on a particular

effect) - then reduce the number of columns in the

decision table by merging the columns(representing

set of causes) for that particular effect with the set

of columns for some other effect.

else- Add individually

End of Procedures: DT_FROM_CEG

3. EXAMPLE

Proposed algorithm is applied on cause effect graph as in

Figure

2

Figure 2. Problem Cause-Effect Graph

Input: (a) A template containing causes C
1
,C2,C3,C4

,
effects

ef1, ef2 and constraint are exclusive and requires
(a=4,b=2)[see Figure 2]

Output: A decision table DT containing N rows and M
columns, where N= a + b (a=4 & b=2) therefore N= 6 . M
depends on the relationship between the causes and effects
as captured in the cause-effect graph.

Cause Effect

Decision Table for Test

Cases for each Effect

Combined Decision

Table Test Case for all

Effect

Merge Test Cases if

Possible

V

C

1

C

2

 C1

C

3

 C1

C

4

 C1

1 2

3

ef1

ef2

^

^

E

X

Y

Z

I

X

Y

O

R

X

Y

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.7, August 2017

9

Procedure: DT_FROM_CEG & initialize DT to an empty

decision table.

Step1: There are 4 causes and 2 effects, requires constraint

exist between c1 and c3, exclusive constraint exists between

c2 and c4. Ef1 depends on c1, c2 and c3 and ef2 depends on

c1, c2, c3 and c4[In Figure 2].

Step2: Execute following steps for i = 1 to 2 (effect 1 to 2).

 2.1- Select the next effect to be processed, Let e = ef1.

 2.2- Get the combination of causes (c1, c2, c3, node1,

and node2) such that effect ef1 to be true[From Figure 2]

In given example[Figure 2] to make effect1 true[using Table

1]: node2 should be true which is dependent on c3 and node

1.

C3 node 1

 0 0

 1 1

 1 0

Table 3. For effect1(ef1)

[Using Table 1 & Figure 2]

C1 C2 C3

1 0 0

0 1 0

0 0 0

1 1 1

1 0 1

0 1 1

0 0 1

In above all test-cases effect 1(ef1) can be true[Table 3].

But there are some infeasible test-cases ,For removal of

infeasible test-cases some constraints applied [Table 4].

2.4- Add these changes [Table 4] to the individual decision

table[Table 5].

Table 5. Individual Decision Table for effect 1(ef1)

C1 0 0 1 1

C2 1 0 1 0

C3 0 0 1 1

ef1 1 1 1 1

Now e = ef2 (To make ef1 true)

node 3 has to be true which is dependent on node 2 and

c4[Figure 2]

Table 6. Table for effect 2 (ef2)[using Table 1 & Figure 2]

C1 C2 C3 C4

1 0 0 1

0 1 0 1

0 0 0 1

1 1 1 1

1 0 1 1

0 1 1 1

0 0 1 1

Table 7. For effect 2(ef2) after applying constraints in

table 6[Table 2]

C1 C2 C3 C4

0 0 0 1

1 0 1 1

In above all test-cases effect 2(ef2) can be true[Table 6]. But

there are some infeasible test-cases ,For removal of infeasible

test-cases some constraints applied [Table 7].

2.4- Add these changes[Table 7] to the individual decision

table[Table 8].

Table 8. Individual Decision Table for effect 2(ef2)

C1 0 1

C2 0 0

C3 0 1

C4 1 1

ef2 1 1

Step3: Merge all individual decision tables[Table 5 & Table

8] to Combined decision table [Table9]:-

After Applying

Constraints

[using Table 2]

Table 4. After

applying

constraints in

Table 3

C1 C2 C3

0 1 0

0 0 0

1 1 1

1 0 1

Step-2.3

After Applying Constraints

[using Table 2]

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.7, August 2017

10

Table 9. Combined Decision Table For Effect 1(ef1) And

Effect 2(ef2)

C1 0 0 1 1 0 1

C2 1 0 1 0 0 0

C3 0 0 1 1 0 1

C4 0 0 0 0 1 1

ef1 1 1 1 1 1 1

ef2 0 0 0 0 1 1

Table 10. Final Decision Table (M=4 & N= 6)

C1 0 0 1 1

C2 1 0 1 0

C3 0 0 1 1

C4 0 1 0 1

ef1 1 1 1 1

ef2 0 1 0 1

There are 6 test-cases [Table 9]. In Table 10 we have

minimize test -cases(2 test cases).Here number of columns are

4(i.e. M=4) & Number of rows are 6 (i.e. N= a + b = 4+2=6),

i.e. test cases are 4 generated finally[Table 10]

4. CONCLUSION
The proposed approach is based on algorithm given by

Srivastava et al[2009] for creating decision table from cause

effect graph which is further considered for generation of test

cases.

This method further minimizes number of test cases when

there is some set of causes which is not affecting all effects,

in that case test cases are merged to reduce number of test

cases[Table 10].

5. REFERENCES
[1] Srivastava, Praveen Ranjan, Parshad Patel, and Siddharth

Chatrola. "Cause effect graph to decision table

generation." ACM SIGSOFT Software Engineering

Notes 34.2 (2009): 1-4.

[2] Myers, Glenford J., Corey Sandler, and Tom Badgett. The

art of software testing. John Wiley & Sons, 2011.

[3] Badhera, Usha, G. N. Purohit, and S. Taruna. "Fault Based

Techniques for Testing Boolean Expressions: A

Survey." arXiv preprint arXiv:1202.4836 (2012).

[4] Mathur, Aditya P. Foundations of Software Testing, 2/e.

Pearson Education India, 2008.

[5] Paradkar, Amit, Kuo-Chung Tai, and Mladen A. Vouk.

"Specification‐based testing using cause‐effect

graphs." Annals of Software Engineering 4.1 (1997):

133-157.

[6] Nursimulu, Khenaidoo, and Robert L. Probert. "Cause-

effect graphing analysis and validation of

requirements." Proceedings of the 1995 Conference of

the Centre for Advanced Studies on Collaborative

research. IBM Press, 1995.

[7] Elmendorf, William R. Cause-effect graphs in functional

testing. IBM Poughkeepsie Laboratory, 1973.

[8] Burnstein, Ilene. Practical software testing: a process-

oriented approach. Springer Science & Business Media,

2006.

[9] Ferriday, Cai. "A Review Paper on Decision Table-Based

Testing." Swansea University, CS339-2007 20 (2007):

952-965.

C4 is not affecting the ef1 ,so we can

merge the causes of ef2 with ef1 ,

(column 5 and 6 merge with column

2 and 4 respectively[Table 9])

IJCATM : www.ijcaonline.org

