
International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.10, September 2017

1

Analysis of Prevention of XSS Attacks at Client Side

Teena Hadpawat
Department of CSE

CTAE, Udaipur

Dipesh Vaya
Department of CSE

SSCE, Udaipur

ABSTRACT

The web has become paramount part of our lives.

Unfortunately, as our dependency on the web increases, so

does the interest of attackers in enslaving web applications

and web-base information systems. Previous work in the field

of web application security has mainly focused on the

mitigation of Cross Site Scripting and SQL injection attacks.

XSS, or Cross Site Scripting, allows an attacker to execute

code on the target website from user's browser of ten causing

side effects such as data compromise, or the stealing of a user

session. This can allow an attacker to impersonate a user to

steal their details, or act in their place without consent. It is

caused by scripts, which do not sanitize user input. In general,

XSS attack is easy to execute, but difficult to detect and

prevent. It can be prevented at both client and server. Several

server side solutions of XSS attacks do exist, but such

techniques have not been universally applied, because of their

deployment overhead. In this paper analyzing of client side

solution to detect attack and which technique is appropriate is

done. In this paper focus is on the analysis of most of the

client side solution presented yet and provides a comparative

view of the solutions.

Keywords

XSS attacks, SQL injection, Client side solution

1. INTRODUCTION
The rapid growth of internet resulted in feature rich, dynamic

web applications. This increase resulted in the harmful impact

of security flaws in such applications. Vulnerabilities leading

to compromise of sensitive information are being reported

continuously, resulting in ever increasing financial damages.

Notably Facebook, MySpace and Orkut have all been hit by

these attacks. XSS attacks can be self-propagating [1], and

have the potential to rapidly victimize millions of people. The

JavaScript language [2] is widely used to enhance the client-

side display of web pages. Usually, JavaScript code is

downloaded into browsers and executed on-the-fly by an

embedded interpreter. In this scenario, the attacker sends a

specially crafted e-mail message to a victim containing

malicious link scripting such as one shown below:

<A

HREF=http://educane.com/registration.cgi?clientprofile=<SC

RIPT>malicious code</SCRIPT>>Click here

 When an unsuspecting user clicks on this link, the URL is

sent to educane.com including the malicious code. If the

legitimate server sends a page back to the user including the

value of client profile, the malicious code will be executed on

the client web browser, comparative view of two proposed

client side techniques, client side optimization and noxes[5] is

shown in Fig 1.

Fig 1: Email Scenario of Cross Site Scripting

2. TYPES OF XSS ATTACKS

2.1 The persistent (or stored)
It is a more devastating variant of a cross-site scripting flaw, it

occurs when the data provided by the attacker is saved by the

server, and then permanently display on "normal" pages

returned to other users in the course of regular browsing,

without proper HTML escaping. A classic example of this is

with online message boards where users are allowed to post

HTML formatted message for other users to read.

Figure 2: Persistent Attack

2.2 Non persistent
The non-persistent (or reflected) cross-site scripting

vulnerability is by far the most common type. These holes

show up when the data provided by a web client, most

commonly in HTTP query parameters or in HTML form

submissions, is used immediately by server-side scripts to

generate a page of results for that user, without properly

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.10, September 2017

2

sanitizing the request.

<?php

if(!array_key_exists("name",$_GET) | |$_GET['name'] ==

NULL || $_GET['name']==''){

$isempty=true;

} else{

echo '<pre>';

echo 'Hello' . $_GET['name'];

echo '</pre>';

}?>

AS it can be seen that the “name” parameter doesn't sanitized

and echo back to the user, so when the user inject a malicious

JS code, It will execute. Now attacker will inject its malicious

js Code, for demonstration <script>alert (/xss/) </script> is

injected.

2.3 DOM based
DOM-based vulnerabilities occur in the content processing

stages performed by the client, mostly in client-side

JavaScript. The name refers to the standard model for

representing HTML or XML contents which is called the

Document Object Model (DOM) JavaScript programs

manipulate the state of web page and populate it with

dynamically-computed data primarily by acting upon the

DOM. This type occurs on the java script code itself that the

developer use in client side for example "A typical example is

a piece of JavaScript accessing and extracting data from the

URL via the location.* DOM, or receiving raw non-HTML

data from the server via XML HttpRequest, and then using

this information to write dynamic HTML without proper

escaping, entirely on client side.

...

Select your language:

<select><script>

document.write("<OPTION

value=1>"+document.location.href.substring(document.

location.href.indexOf("default=")+8)+"</OPTION>");

document.write("<OPTION

value=2>English</OPTION>");

 </script></select>

...

If the page is loaded with the 'default' parameter set to

'<script>alert(“xss”)</script>' instead of the intended

language string, then the extra script will be added into the

page's DOM and executed as the page is loaded.

3. RELATED WORK

3.1 Personal Firewall
Personal firewall is subject to its ability to effectively control

and block incoming and outgoing traffic. In addition software

firewalls operate through a learning process in which program

and processes may be allows and denied access to the internet.

If a new process executed on the selected workstation which

requires internet access, the firewall should continually block

access until the end user clearly permits the traffic to flow.

Unfortunately software firewalls do not clearly and legibly

present information on program and processes which are

attempting to access the internet. As a result numerous end

user tend to remove and uninstall the firewall as the question

the firewall presents are often not aimed at an individual with

little or no expertise in computer and network security.

3.2 Blacklisting vs. Whitelisting
To help mitigate XSS attacks, two basic techniques are used

to sanitize data. Blacklisting uses a list of known bad data to

block illegal content from being executed. Whitelisting uses a

list of known good data to allow only that content to be

executed. Blacklisting mode is faster to set up, but can be

bypassed more easily by a skilled attacker. Whitelisting

allows for a much stronger security solution but comes with a

steep learning curve. Once mastered, though, whitelisting is

very effective at stopping XSS attacks. OWASP [7] example

of white testing OWASP Enterprise Security API.

3.3 Swap
SWAP operates on a reverse proxy, which relays all traffic

between the web server that should be protected and its server

visitors. The proxy forwards each web response, before

sending it back to the client browser, to a JavaScript detection

component, in order to identify embedded JavaScript content.

In the JavaScript detection component, SWAP puts to work a

fully functional, modified Web browser that notifies the proxy

of whether any scripts are contained in the inspected content.

If no scripts are found, the proxy decodes all script IDs,

effectively restoring all legitimate scripts, and delivers the

response to the client. If the JavaScript detection component,

on the other hand, detects a script, SWAP refrains from

delivering the response, but instead notifies the client of the

attempted XSS attack. Solutions on server side result in

considerable degradation of web application and are often

unreliable, whereas the client side solutions result in a poor

web browsing experience, there is need of an efficient client

side solution which does not degrade the performance.

4. COMPARISON
Firstly, optimized client side solution is based on modified

client side web browser, this solution was implemented using

open source Mozilla Firefox 1.5 web browser from Mozilla

foundation. The modified web browser was successfully built

with the help of the build documentation provided on Mozilla

website on Microsoft’s Windows XP using Visual Studio .Net

2003 and Cygwin, where as noxes [5] is based on personal

web firewall application which runs on the background

service of user’s desktop. The development of Noxes [5] was

inspired by Windows personal firewalls that are widely used

on PCs and notebooks today. Popular examples of such

firewalls are Tiny, ZoneAlarm, Kerio and Norton Personal

Firewall through Noxes [5] and can either be blocked or

allowed based on the current security policy in other

components of the web browser. Some Data structures were

created, and others were modified according to the need

where as in Noxes [5] operates as a web proxy that fetches

HTTP requests on behalf of the user’s browser. Hence, all

web connections of the browser pass through Noxes [5] and

can either be blocked or allowed based on the current security

policy

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.10, September 2017

3

Fig 3. Proposed Solution: a three step process to detect

XSS

Third, client side fig. 3, checks for the maximum number of

characters, and if the input exceeds the number of characters,

then the input is rejected without processing the input further.

The second condition is checked by the analyzer is the

existence of special characters. This is because the scripts can

only be executed when it is embedded using the tags and

special characters. If special character exists in the input, then

the input is passed to the parser, otherwise the request is

forwarded to the web application. It is not enough to use a

blacklist of special characters to detect XSS in input or to

encode output. Searching for and replacing just a few

characters or phrases is weak and has been attacked

successfully. Even an unchecked “” tag is unsafe in some

contexts. XSS has a surprising number of variants that make it

easy to bypass blacklist validation. A whitelist and a blacklist

of sites is maintained and synchronized with server of security

sites like CERT or other advisory, so that the decision can be

taken on the basis of previous record of the website. Also a

list of potentially vulnerable script tags is maintained as a

small fast database. The second step is performed by an

analyzer which uses both these databases to detect

vulnerability, and decision is made by user. The third step is

above the whole system, which is performed by a data

monitoring system. The flow of data is passively monitored

by the system. The operations processing sensitive

information are marked along with the results of those

operations. If the marked data is about to be transferred over

the network, user is asked to al- low or disallow the transfer

based on the information in the dialogue box provided. The

information is in layman language, and it teaches user about

the consequences, so that any kind of user can take a good

decision. Where as in noxes [5] personal firewall that will

have a set of filter rules that do not change over a long period

of time, a personal web firewall has to deal with filter rule sets

that are flexible; a result of the highly dynamic nature of the

web. In a traditional firewall, a connection being opened to an

unknown port by a previously unknown application is clearly

a suspicious action. On the web, however, pages are linked to

each other and it is perfectly normal for a web page to have

links to web pages in domains that are unknown to the user.

Hence, a personal web firewall that should be useful in

practice must support some optimization to reduce the need to

create rules. At the same time, the firewall has to ensure that

security is not undermined. An important observation is that

all links that are statically embedded in a web page can be

considered safe with respect to XSS attacks. That is, the

attacker cannot directly use static links to encode sensitive

user data. The reason is that all static links are composed by

the server before any malicious code at the client can be

executed. An XSS attack, on the other side, can only succeed

after the page has been completely retrieved by the browser

and the script interpreter is invoked to execute malicious code

on that page. In addition, all local links can implicitly be

considered safe as well. An adversary, after all, cannot use a

local link to transfer sensitive information to another domain;

external links have to be used to leak information to other

domains. Based on these observations, system is extended

with the capability to analyze all web pages for embedded

links. That is, every time Noxes [5] fetches a web page on

behalf of the user, it analyzes the page and extracts all

external links embedded in that page. Then, temporary rules

are inserted into the firewall that allows the user to follow

each of these external links once without being prompted.

Because each statically embedded link can be followed

without receiving a connection alert, the impact of Noxes [5]

on the user is significantly reduced. Links that are extracted

from the web page include HTML elements with the href and

src attributes and the url identifier in Cascading Style Sheet

(CSS) files. The filter rules are stored with a time stamp and if

the rule is not used for a certain period of time, it is deleted

from the list by a garbage collector. Using the previously

described technique, all XSS attacks can be prevented in

which a malicious script is used to dynamically encode

sensitive information in a web request to the attacker’s server.

The reason is that there exists no temporary rule for this

request because no corresponding static link is present in the

web page. Note that the attacker could still initiate a denial-of-

service (DOS) XSS attack that does not transfer any sensitive

information. For example, the attack could simply force the

browser window to close. Such denial-of-service attacks,

however, are beyond the scope of our work as Noxes [5]

solely focuses on the mitigation of the more subtle and

dangerous class of XSS attacks that aim to steal information

from the user. It is also possible to launch an XSS attack and

inject HTML code instead an XSS attack and inject HTML

code instead of JavaScript. Since such attacks pose no threat

to cookies and session IDs, they are no issue for Noxes [5].

Figure 4 shows an example page. When this page is analyzed

by Noxes [5], temporary rules are created for the URLs

http://example.com/1.html (line 4), http://example2.com/-

2.html (line 6) and http://external.com/image.jpg (line 8). The

local links /index.html and /services.html (lines 11 and 12) are

ignored

1. <html>

2. <body>

3. <h2>This is an example page.</h2>

4.

5. First link

6.

7. Second link

8. <img src=“http://external.com/image.jpg“

9. alt=“Some image“>

10. This is followed by a local link:

11. Home

12. Services

13.

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.10, September 2017

4

14. </body>

15. </html>

Fig 4. An example HTML page

When Noxes [5] receives a request to fetch a page, then it

goes through several steps to decide if the request should be

allowed. It first uses a simple technique to determine if a

request for a resource is a local link. This is achieved by

checking the Referrer HTTP header and comparing the

domain in the header to the domain of the requested web

page. Domain information is determined by splitting and

parsing URLs. For example, the hosts client1.tucows.com and

www.tucows.com will both be identified by Noxes [5] as

being in the domain tucows.com. If the domains are found to

be identical, the request is allowed. Although the referrer

header is optional according to the HTTP specification, all

popular browsers such as the Internet Explorer, Opera and

Mozilla make use of this header. Note that using the Referer

HTTP header is safe because the attacker has no means of

spoofing or changing this header. The reason is that

JavaScript does not allow the Referrer HTTP header to be

modified (e.g. JavaScript error messages are generated in

Internet Explorer, Mozilla and Opera).Also, the code that the

attacker can inject only runs on the victim’s browser and has

no direct access to the network. If a request being fetched is

not in the local domain, Noxes [5] then checks to see if there

is a temporary filter rule for the request. If there is a

temporary rule, request is allowed. If not, Noxes [5] checks its

list of permanent rules to find a matching rule. If no rules are

found matching the request, the user is prompted for action

and can decide manually if the request should be allowed or

blocked.

5. CONCLUSION
XSS vulnerabilities are being discovered and disclosed at an

alarming rate. XSS attacks are generally simple, but difficult

to prevent because of the high flexibility that HTML encoding

schemes provide to the attacker for circumventing server-side

input filters. In [3], the author describes an automated script-

based XSS attack and predicts that semi automated techniques

will eventually begin to emerge for targeting and hijacking

web applications using XSS, thus eliminating the need for

active human exploitation.

Large amount of websites are vulnerable to XSS attacks. The

client side solution is found to be very effective. The solution

is platform independent and has been implemented on a

platform independent browser, so it can be used with other

operating systems with a few changes. Cross site scripting

vulnerability exists on all the platforms, so it is a big

advantage over other solutions it uses a step by step approach

instead of performing all the tests at the same time.

In noxes [5] is that it is the first client-side solution that

provides XSS protection without relying on the web

application providers. Noxes [5] supports an XSS mitigation

mode that significantly reduces the number of connection alert

prompts while at the same time providing protection against

XSS attacks where the attackers may target sensitive

information such as cookies and session IDs. Thanks to the

experts who have contributed towards development of the

template.

6. REFERENCES
[1] Kamkar, S. I’m popular, 2005, description and technical

explanation of the JS. Spacehero (a.k.a. “Samy”)

MySpace worm.

[2] Flanagan,D. JavaScript: The Definitive Guide. December

2001. 4th Edition.

[3] Masri, W., Beirut, L., Podgurski, A. Using dynamic

information flow analysis to detect attacks against

applications, ACM SIGSOFT Software Engineering

Notes Volume 30, Issue 4 July 2005

[4] Jovanovic, N, Kruegel, C., and Kirda., E. Pixy: A Static

Analysis tool for Detecting web application

vulnerabilities, Proceedings of the 2006 IEEE

Symposium on Security and Privacy(S&P’06).

[5] Kirda, E., Kruegel, C., Vigna,G., and Jovanovic., N.

Noxes: A Client-Side Solution for Mitigating Cross-Site

Scripting Attacks. In The 21st ACM Symposium on

Applied Computing (SAC 2006), Pages: 330 - 337, April

23-27, 2006.

[6] Ismaill,, O., and .Youki, M.E., A proposal and

Implementation of Automatic Detection/Collection

system for Cross-Site Scripting Vulnerability”=.

Proceeding of the 18th International conference on

Advanced Information Networking and Application

(AINA’04).

[7] Kavado, Inc. “InterDo Version 3.0.” Kavado Whitepaper,

2003.

IJCATM : www.ijcaonline.org

