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ABSTRACT 

Large amount of space is required to store biological 

sequences in DNA database like GenBank sequence database.  

The data storage for biological sequences has become very 

essential in today’s current situation. Standard compression 

algorithms are not competent enough to compress biological 

sequences. In recent times, special algorithms have been 

introduced specifically for the purpose of compressing the 

biological sequences like DNA and protein sequences. In this 

paper, the Burrows-Wheeler Transform (BWT) based 

approaches are explored to compress the biological sequences. 

In comparison with the existing general purpose compression 

algorithms, the proposed BWT based method compresses 

these types of sequences better and at the same time the cost 

of Burrows-Wheeler Transform is almost insignificant.   
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1. INTRODUCTION 
Bioinformatics deals with algorithms, databases and 

information systems in the field of biology and medicine. 

Modern Bioinformatics science produces enormous amounts 

of genomic sequences, such as nucleotide and amino acid 

sequences. Rapid growths of molecular research technologies 

and developments in information technologies have produced 

a significant amount of data associated with molecular 

biology. The human genome contains billions of 

deoxyribonucleic acid (DNA) base pairs.  Downloading and 

maintaining the DNA sequences are much cost consuming 

factors due to the increasing amount of genome sequences. 

Hence, decreasing the space required to store the DNA 

sequences has become a very important new challenge faced 

by researchers. In addition to the need for efficient and 

effective algorithms for the analysis, annotation, interpretation 

and visualization of the data, there is also the need of effective 

techniques for the organization to store and transmit this mass 

amount of biological sequence data. In this paper, the problem 

of compressing biological sequences is considered and it plays 

a vital role in saving the storage space and transmission time 

required for DNA sequences and protein sequences. From a 

computational viewpoint, a biological sequence can be viewed 

mainly as a one-dimensional sequence of symbols, for 

instance with an alphabet of 4 symbols for DNA and 20 

symbols for proteins. 

For this effective improvement, the BWT (Burrows–Wheeler 

Transform), MTF (Move-To-Front encoding), RLE (Run 

Length Encoding) and Arithmetic Coding are efficiently 

introduced in the following sections.  

2. METHODS 

2.1 Burrows–Wheeler Transform 
The Burrows–Wheeler Transform (BWT) was developed by 

Michael Burrows and David J. Wheeler in 1994[3]. The 

Burrows - Wheeler Transform (BWT) works on a block of 

data, where the input data is read block by block and each 

block is encoded separately as a single unit. BWT takes a 

block of data and rearranges it lexicographically using a 

sorting algorithm. It also passed through a Move-To-Front 

(MTF) stage, then the Run Length encoder Stage and finally 

applies Huffman coding or Arithmetic Coding. The 

transformation is reversible that the original ordering of the 

data can be restored with no loss of information. The method 

is also referred to as block sorting algorithm. Bzip2 

compressing algorithm compresses files using the Burrows-

Wheeler block sorting text compression algorithm, and 

Huffman coding. Bzip2 compresses large files in blocks.  

The Burrows–Wheeler Transform (BWT) is not actually a 

compression scheme but a reversible transform that 

transforms the data into an intermediate format that is 

generally more compressible than the original data [2]. 

Attempted improvements on the original BWT algorithm have 

shown very limited success. The algorithm works by 

transforming a string S of N characters by forming the N 

rotations (cyclic shifts) of S, sorting them lexicographically, 

and extracting the last character of each of the rotations. A 

string L is then formed from these extracted characters, where 

the ith character of L is the last character of the ith sorted 

rotation. The algorithm also computes the index I of the 

original string S in the sorted list of rotations. With only L and 

I, there is an efficient algorithm to compute the original string 

S when undoing the transformation for decompression [4]. 

This BWT creates the transformed data even larger in size 

than its original size, but the transformed data is in need of 

less storage space [8]. Burrows and Wheeler explain that 

much of the time, the algorithm is performing sorts which 

may be another area where using a parallel sorting algorithm 

may increase the speed of BWT. They also explain that to 

achieve good compression, a block size of sufficient value 

must be chosen, at least 2 kilobytes [7]. Increasing the block 

size also increases the effectiveness of the algorithm at least 

up to the size of several megabytes. 

For example, BWT is applied on the below DNA sequence: 

ATGGTGCACCTGACT 

1. Cyclic shifts of the above DNA sequence is given 

as follows 

ATGGTGCACCTGACT 

TATGGTGCACCTGAC 

CTATGGTGCACCTGA 
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ACTATGGTGCACCTG 

GACTATGGTGCACCT 

TGACTATGGTGCACC 

CTGACTATGGTGCAC 

CCTGACTATGGTGCA 

ACCTGACTATGGTGC 

       2. After sorting them lexicographically, the above 

DNA sequence will be as follows. 

ACCTGACTATGGTGC 

ACTATGGTGCACCTG 

ATGGTGCACCTGACT 

CACCTGACTATGGTG 

CCTGACTATGGTGCA 

CTATGGTGCACCTGA 

CTGACTATGGTGCAC 

GACTATGGTGCACCT 

GCACCTGACTATGGT 

        3. BWT sequence is CGTGAACTTTGCCGA, and 

I=3. 

2.2 Move-to-Front Encoding 
Move-to-Front algorithm [1] converts the data into a sequence 

of integers, with the expectation that the values of integers are 

small and could be effectively transformed using a statistical 

coding algorithm. The MTF encoder retains a list of symbols, 

called MTF list, which is initialized with all the symbols that 

occur in the data to be compressed. Then, for each symbol 

from the data, the encoder provides its position on MTF list in 

the form of an integer and updates the MTF list. A currently 

encoded symbol is moved from the current position in the 

MTF list to the beginning of the list .The most important 

property of this technique is that recently used symbols are 

near to the beginning of the list. Equal symbols will 

frequently appear close to each other in the data and therefore 

these symbols will be converted to small integers. In general, 

small integers appear more frequent so that they are encoded 

in fewer bits than larger integers using a statistical coding like 

the Huffman or the arithmetic coding. Move-to-front encoding 

algorithm transforms a DNA sequence S into a sequence of 

numbers, provided that the alphabet is known before hand.  

Here is the algorithm for Move-to-front encoding method. 

1.  Initialize string E to contain each letter in the alphabet 

once. 

2.  Read the letters of S one at a time. For a character A that 

was just read, write down the index of A in E and move 

A in E to the front of E. So E becomes different 

permutations of the letters in the alphabet as S is 

processed, and obtained a sequence of indices. 

Here is an example of the encoding of the string 

“GGGTTTAATTCCC” using the alphabet (A,C,G,T}. 

Table 1 shows the Move-to-Front encoding table. 

 

 

 

Table 1. Move-to-Front Encoding Table 

Letter of 

S 
E 

(before) 

Index E 

(after) 

G 

G 

G 

T 

T 

T 

A 

A 

T 

T 

C
 

C
 

C
 

 

TACG 

GTAC
 

GTAC
 

GTAC
 

TGAC
 

TGAC
 

TGAC
 

TGAC
 

ATGC
 

ATGC
 

TAGC
 

CTAG 

CTAG 

 

3  

0  

0  

1  

0  

0  

3  

0  

1  

0  

3  

0  

0  

 

GTAC
 

GTAC
 

GTAC
 

TGAC
 

TGAC
 

TGAC
 

ATGC
 

ATGC
 

TAGC
 

TAGC
 

CTAG 

CTAG 

CTAG 

 

Hence, the encoding is 3001003010300. One way to get good 

compression is to first do move-to-front encoding on the 

transformed string, then, do arithmetic or Huffman encoding 

in combination with run-length encoding for zero strings.  

2.3 Run Length Encoding 
Run Length Encoding (RLE) compression technique [6] is 

used when a given file contains too many redundant data or 

long run of similar characters. The repeated string or 

characters present in the input file or message is called a run 

which is encoded into two bytes. The first byte represents the 

value of the character in the run and the second byte contains 

the number of times given character appears in the run. 

This Run Length Encoding algorithm consists of replacing 

large sequences of repeating data with only one item of this 

data followed by a counter showing how many times this item 

is repeated. 

Algorithm for the general Run Length Encoding (RLE) is as 

follows:  

  Loop: count = 0 

        REPEAT 

             get next symbol 

             count = count + 1 

         UNTIL (symbol unequal to next one) 

        output symbol 

        IF count > 1 

            output count 

        GOTO Loop 

Let’s see a sample DNA sequence as follows: 

AAAAAAAAAAGGGACCCCTTTTTC 

This DNA sequence length is 24 and there are lots of 

repetitions. Using the Run Length Encoding (RLE) algorithm, 

repetitive runs can be replaced with shorter symbol followed 

by a counter. 

The reduced DNA sequence is  

A10G3A1C4T5C1 

The length of this DNA sequence is 13, which is 

approximately 70% of the initial length. 
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2.4 Arithmetic Coding 
Arithmetic coding has been efficiently developed in the place 

of Huffman coding. In Huffman coding, every input symbol 

has been replaced by a specific code whereas in arithmetic 

coding, a stream of input symbols has been replaced by a 

single floating-point output number. Depending on the length 

of the message, more bits are needed in the output number. 

Arithmetic coding is particularly constructive when dealing 

with symbols with high probabilities. It is also useful that 

output from an arithmetic coding process is a single number 

varying from 0 to 1 , not including 1. This single number can 

be uniquely decoded to create the exact stream of symbols 

that has gone into its construction. In order to construct the 

output number, the symbols being encoded should have a set 

of probabilities assigned to them. Once the character 

probabilities are known, the individual symbols need to be 

assigned a range along a "probability line", which is 

nominally 0 to 1. It does not matter what characters are 

assigned to which segment of the range, as long as it is done 

in the same manner by both the encoder and the decoder. Each 

symbol is allocated the value in the range of 0-1 that matches 

the probability appearance of the symbol. It is understood that 

the symbol holds the values of all except the higher number. 

Consequently, the last symbol has the range of values between 

0.9-0.9999 and not 1[12]. In order to properly decode the first 

character, the final coded message has to be a number greater 

than or equal to the range of the first character of the actual 

stream. The range, that this could fall in, should be maintained 

to encode this number. So, after the first character is encoded, 

the algorithm must continue with the next character in actual 

stream. After the first character is encoded, the low and the 

high of the first character now bound to the range for the 

output number. The remaining of the encoding procedure is 

that each new symbol to be encoded will further control the 

possible range of the values. If it was the first number in the 

text, then low and high ranges of values are set directly to 

those values. 

 Algorithm for the Arithmetic Coding is as follows: 

begin  

   count source symbols 

    interval Ivalue: = new interval 0..1 

    divide Ivalue according to rate of source symbols. 

     readSymbol(X) 

             while (X!=EOF) do  

               begin 

                 new Ivalue := subinterval Ivalue matching X 

                divide Ivalue according to rate of source symbols. 

                 readSymbol(X) 

 end 

        output(best number from Ivalue) 

   end 

2.5 Huffman Coding 
Huffman coding, introduced by David Huffman in 1952 , 

compresses texts by assigning shorter codes to more 

frequently used symbols and longer codes to less frequently 

used ones. This coding is an entropy encoding algorithm used 

for lossless data compression. A specific method in this 

coding is used to choose the representation for each symbol, 

resulting in a prefix-free code that expresses the most 

common characters using shorter strings of bits. To create 

Huffman code, the symbols present in the source file are 

sorted in increasing order by frequency. Merging the two least 

frequency used symbols into a new symbol can be constructed 

and its frequency is the sum of the frequencies of its two child 

symbols. In the way of replacement, a smaller set of symbols 

is obtained and this operation n-1 times can be repeated until 

all symbols have been merged. A node is created through 

every merging operation in a binary tree.  The left or right 

choices on the path from root-to-leaf define the bit of the 

binary code word for each symbol. Though the usage of 

Huffman code is wide and frequent, these codes have three 

major disadvantages. Firstly, two passes are required over the 

document. Secondly, the coding table is stored along the 

document in order to reconstruct it.  

The approach of Huffman’s algorithm is illustrated in the 

following plain text with 24 symbols. 

                       y z y x y x w z x y x z x w x w x y x y x x x y
 

Figure 1 illustrates an example of building the Huffman tree. 

The algorithm starts with a list of nodes ‘x’, ‘y’, ‘z’, and ‘w’, 

with frequencies 11, 7, 3, and 3 respectively. The frequencies 

of each symbol are calculated and a prefix-free tree labeled 

with 0 (left child) or 1 (right child) shown in figure1 is created 

for these symbols. 

 

Fig 1: Prefix-Free Tree 

From the Prefix-Free Tree, the algorithm creates a prefix code 

for each symbol by traversing the binary tree from the root to 

the end node, which corresponds to the symbol. It gives 0 for 

a left branch and 1 for a right branch. The Huffman algorithm, 

using the Huffman tree from Figure 1, assigns codes ‘0’, ‘11’, 

‘100’, and ‘101’ to symbols ‘x’, ‘y’, ‘z’,  and ‘w’ respectively. 

The generated Prefix code table is given below in Table 2: 

Table 2. Prefix Code Table 

Symbol Frequency Codeword 

x  11 0  

y
 7  11 

z  3  100  

w  3  101 
 

The plaintext is encoded with 43 bits as follows: 

1110011011010110001101000101010101101100011 

In standard text storage, 8 bits per symbol are given and 

hence, there are 192 bits required for the above plaintext. 

0 

w z 

1 

1 

1 

0 

0 

 

y 

x 
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With the code table of Table 2, only 43 bits are achieved. 

Moreover, the Huffman tree with the Huffman codes for 

symbols must be stored together with the compressed output. 

This information is needed for the decoder and it is usually 

placed in the header of a compressed file. 

3. PERFORMANCE ANALYSIS 
The compression algorithm consists of two components, an 

encoding algorithm that takes input data and generates a 

“compressed” representation and a decoding algorithm that 

reconstructs the original data from the compressed 

representation. To experiment the BWT based algorithms, a 

standard set of DNA and protein sequences are compressed 

with these algorithms, and results are compared with the other 

standard general purpose compressors. 

The following 7 benchmark standard data set of DNA 

sequences are used in this paper for the purpose of analysis: 

 One chloroplast genomes (CHMPXX) 

 Four human genes (HUMDYSTROP, 

HUMHDABCD, HUMHBB and HUMHPRTB) 

 Two virus genomes (HEHCMVCG and VACCG). 

The following 4 standard data set of protein sequences are 

used for the purpose of analysis: 

 Haemophilus Influenzae(HI) 

 Human(HS) 

 Methanococcus Janaschii(MJ) 

 Saccharomyces Cerevisciae(SC) 

The above data sets are used by many researchers who work 

in DNA sequence compression [5]. The DNA Sequences can 

be downloaded from the GENBANK database: The DNA 

sequences are made available in FASTA file format in DNA 

databases which can also retrieved by any text processor. The 

chemical composition of the DNA is the same for all living 

organisms [10]. The DNA of every living organism contains 

four basic nucleotide bases: adenine, cytosine, guanine, and 

thymine, usually abbreviated using the symbols A, C, G and 

T respectively [11]. A typical structure of DNA sequence file 

is that in the appearance of the nucleotide bases having no 

spaces and an end of line symbol, with a restriction that a 

nucleotide may appear only nine consecutive times. 

Efficiency of the proposed method is measured in terms of 

bits per base (BPB)[9]. The main concern of the compression 

algorithm for these sequences is with the compaction ability 

but not consider with the time taken for the compression. 

Table 3. Compression ratio of the general purpose 

compression algorithm for DNA Sequences 

Sequence 

Name 

File Size 

(Bytes) 

WinRA

R  

(BPB) 

Gzip 

(BPB) 

Bzip 

(BPB) 

Chmpxx 121024 2.25 2.28 2.12 

Humhbb 73308 2.22 2.25 2.15 

Humghcsc 66495 2.32 --- --- 

Humhdabcd 58864 2.19 2.24 2.07 

Humhprtb 56737 2.23 2.27 2.09 

Hehcmvcg 229354 2.32 2.33 2.17 

Vaccg 191737 2.23 2.25 2.09 

Average  2.25 2.27 2.16 

 

Proteins are sequences consumed from amino acids [13]. 

There are 20 kinds of amino acids except for some abnormal 

ones; hence the size of alphabet of proteins is 20. It is 

recognized that the compression of proteins is also very 

difficult .Since the size of alphabet is 20, consequently the 

storage space required for proteins is equal to or less than log2 

(20) = 4.322 per symbol. The compression ratios by the 

widely used compression algorithms compress or gzip are 

more than log2 (20) = 4.322 bits per symbol. The unit of 

compression ratio for protein symbol is bit per symbol. 

Compression results are best when an algorithm can compress 

a sequence less than log2 (20) =4.322 bits per symbol. The 

sequence file based on DNA sequence and protein sequence is 

passed through the BWT transform and then piped through a 

move-to-front stage, then a run length encoder stage, and 

finally an entropy encoder, normally arithmetic coding or 

Huffman Coding. In this section, to compare the performance 

of the proposed idea, the BWT transform, move-to-front, run 

length encoder and arithmetic coding is used.  

Table 4. Compression ratios of the BWT based algorithm 

for DNA Sequences 

Seq 

Name 

Compressed File size 

BWT,MTF, 

RLE,ARI 

BWT,MTF, 

ARI 

 

BWT,ARI 

 

Bytes BPB Bytes BPB Bytes BPB 

Chmpxx 33133 2.19 30323 2.00 28622 1.89 

Humhbb 20255 2.21 18505 2.02 18371 2.00 

Humghc

sc 
15582 1.87 13314 1.60 

16911 
2.03 

Humhda

bcd 
15910 2.16 14747 2.00 

15030 
2.04 

Humhprt

b 
15507 2.19 14274 2.01 

14320 
2.02 

Hehcmv

cg 
64269 2.24 58284 2.03 

57801 
2.02 

Vaccg 52172 2.18 48345 2.07 46816 1.95 

Average  2.15  1.96  1.99 
 

Table 5. Compression ratio of the general purpose 

compression algorithm for Protein Sequences 

Seq 

Name 

Seq. 

Length 

(Bytes) 

Compre

ss 

(Bps) 

Bzip2 

(Bps) 

Gzip9 

(Bps) 

PPM

+ 

HI 509519 4.7702 4.324 4.6712 4.862 

HS 3295751 4.7177 4.256 4.6054 4.641 

MJ 448779 4.6459 4.269 4.5879 4.711 

SC 2900352 4.7761 4.300 4.6397 4.686 

Average 

(BPS) 
 4.727475 4.28725 4.62605 4.725 

Table 6. Compression ratios of the BWT based algorithm 

for Protein Sequences 

Sequence 

Name 

BWT, MTF, 

RLE, ARI  (BPS) 

BWT, MTF, 

ARI (BPS) 

BWT, 

ARI (BPS) 

 (HI) 4.4721 4.3039 4.1843 

 (HS) 4.3984 4.2438 4.1581 

 (MJ) 4.4253 4.2568 4.0959 

 (SC) 4.4603 4.3009 4.1897 

Average 

(BPS) 
4.439025 4.27635 4.157 



International Journal of Computer Applications (0975 – 8887) 

Volume 173 – No.3, September 2017 

15 

The actual command line to perform the compression 

sequence will look like this: 

BWT < input-file | MTF | RLE | ARI > output-file 

 The decompression is just the reverse process and command 

line to perform the decompression sequence look like this  

UNARI input-file | UNRLE | UNMTF |UNBWT > output-

file 

According to the above said procedure, the average 

compression ratio in terms of BPB is 2.15 for the standard 

DNA files. Since the method compresses the DNA sequences 

very badly takes more than 2 BPB. The average compression 

ratio in terms of BPS is 4.439025 for the protein files. Since 

the method compresses the sequences very badly takes more 

than 2 BPB for DNA and more than log2 (20) = 4.322 per 

symbol for protein sequences.  

Therefore the procedure given below is tried out to improve 

the compression ratio of the DNA and protein files. The 

sequence file is passed through the BWT transform and then 

piped through a move-to-front stage, and finally an entropy 

encoder, normally arithmetic coding. 

The actual command line to perform the compression 

sequence will look like this: 

BWT < input-file | MTF | ARI > output-file 

The decompression is just the reverse process and command 

line to perform the decompression sequence look like this  

UNARI input-file | UNMTF |UNBWT > output-file 

The procedure without run length encoding gives slightly 

better compression improvement when compared with BWT 

then piped through a move-to-front stage, then a run length 

encoder stage, and finally an arithmetic coding. Again to get 

better improvement of DNA files, the sequence file is passed 

through the BWT transform and then applied an entropy 

encoder called arithmetic coding. This procedure gives the 

average compression ratio of 1.99 BPB for DNA files and 

4.157 BPS for protein sequences. 

The comparative compression ratio of the existing general 

purpose compression algorithm like WinRAR, GZIP and 

BZIP of the DNA test corpus are shown in Table 3. The 

detailed compression ratios in terms of BPB for the Burrows 

Wheeler Transform based algorithm of the DNA test corpus 

are shown in Table 4. The test results of protein sequences are 

shown in Table 5 and 6. It shows that the combination of 

Borrow Wheeler Transformation, move-to-front and 

arithmetic coding works better when compared with the 

existing general purpose compression algorithms. 

4. CONCLUSIONS 
After doing a detail study on various standard general purpose 

compression algorithms it is seen that a great improvement on 

DNA and protein sequences compression ratio after 

preprocessing with Burrows Wheeler Transformation. With 

these results it is understood that the combination of Burrows 

Wheeler Transform and Arithmetic Encoding gives us a best 

compression method for DNA and protein compression. The 

simplicity and flexibility of BWT based Compress algorithms 

could make it an invaluable tool for DNA compression in 

clinical research. Since the Standard general purpose 

compression algorithms are unsuccessful to get a good 

compression ratio, it is better to use pattern recognition 

method to create new compression algorithm for DNA and 

protein sequences to improve the compression ratio. 
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