
International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.3, September 2017

11

Higher Compression from Burrows-Wheeler

Transform for DNA Sequence

Rexline S. J.

Department of Computer
Science

 Loyola College
 Chennai, India

 Aju Richard Gerard
Department of Electronics and
Communication Engineering
SSN college of Engineering

Chennai, India

 Trujilla Lobo F.
Department of Computer

Science
Loyola College
Chennai, India

ABSTRACT

Large amount of space is required to store biological

sequences in DNA database like GenBank sequence database.

The data storage for biological sequences has become very

essential in today’s current situation. Standard compression

algorithms are not competent enough to compress biological

sequences. In recent times, special algorithms have been

introduced specifically for the purpose of compressing the

biological sequences like DNA and protein sequences. In this

paper, the Burrows-Wheeler Transform (BWT) based

approaches are explored to compress the biological sequences.

In comparison with the existing general purpose compression

algorithms, the proposed BWT based method compresses

these types of sequences better and at the same time the cost

of Burrows-Wheeler Transform is almost insignificant.

General Terms

Algorithms

Keywords

DNA sequence compression, Burrows-Wheeler Transform,

BWT and genome.

1. INTRODUCTION
Bioinformatics deals with algorithms, databases and

information systems in the field of biology and medicine.

Modern Bioinformatics science produces enormous amounts

of genomic sequences, such as nucleotide and amino acid

sequences. Rapid growths of molecular research technologies

and developments in information technologies have produced

a significant amount of data associated with molecular

biology. The human genome contains billions of

deoxyribonucleic acid (DNA) base pairs. Downloading and

maintaining the DNA sequences are much cost consuming

factors due to the increasing amount of genome sequences.

Hence, decreasing the space required to store the DNA

sequences has become a very important new challenge faced

by researchers. In addition to the need for efficient and

effective algorithms for the analysis, annotation, interpretation

and visualization of the data, there is also the need of effective

techniques for the organization to store and transmit this mass

amount of biological sequence data. In this paper, the problem

of compressing biological sequences is considered and it plays

a vital role in saving the storage space and transmission time

required for DNA sequences and protein sequences. From a

computational viewpoint, a biological sequence can be viewed

mainly as a one-dimensional sequence of symbols, for

instance with an alphabet of 4 symbols for DNA and 20

symbols for proteins.

For this effective improvement, the BWT (Burrows–Wheeler

Transform), MTF (Move-To-Front encoding), RLE (Run

Length Encoding) and Arithmetic Coding are efficiently

introduced in the following sections.

2. METHODS

2.1 Burrows–Wheeler Transform
The Burrows–Wheeler Transform (BWT) was developed by

Michael Burrows and David J. Wheeler in 1994[3]. The

Burrows - Wheeler Transform (BWT) works on a block of

data, where the input data is read block by block and each

block is encoded separately as a single unit. BWT takes a

block of data and rearranges it lexicographically using a

sorting algorithm. It also passed through a Move-To-Front

(MTF) stage, then the Run Length encoder Stage and finally

applies Huffman coding or Arithmetic Coding. The

transformation is reversible that the original ordering of the

data can be restored with no loss of information. The method

is also referred to as block sorting algorithm. Bzip2

compressing algorithm compresses files using the Burrows-

Wheeler block sorting text compression algorithm, and

Huffman coding. Bzip2 compresses large files in blocks.

The Burrows–Wheeler Transform (BWT) is not actually a

compression scheme but a reversible transform that

transforms the data into an intermediate format that is

generally more compressible than the original data [2].

Attempted improvements on the original BWT algorithm have

shown very limited success. The algorithm works by

transforming a string S of N characters by forming the N

rotations (cyclic shifts) of S, sorting them lexicographically,

and extracting the last character of each of the rotations. A

string L is then formed from these extracted characters, where

the ith character of L is the last character of the ith sorted

rotation. The algorithm also computes the index I of the

original string S in the sorted list of rotations. With only L and

I, there is an efficient algorithm to compute the original string

S when undoing the transformation for decompression [4].

This BWT creates the transformed data even larger in size

than its original size, but the transformed data is in need of

less storage space [8]. Burrows and Wheeler explain that

much of the time, the algorithm is performing sorts which

may be another area where using a parallel sorting algorithm

may increase the speed of BWT. They also explain that to

achieve good compression, a block size of sufficient value

must be chosen, at least 2 kilobytes [7]. Increasing the block

size also increases the effectiveness of the algorithm at least

up to the size of several megabytes.

For example, BWT is applied on the below DNA sequence:

ATGGTGCACCTGACT

1. Cyclic shifts of the above DNA sequence is given

as follows

ATGGTGCACCTGACT

TATGGTGCACCTGAC

CTATGGTGCACCTGA

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.3, September 2017

12

ACTATGGTGCACCTG

GACTATGGTGCACCT

TGACTATGGTGCACC

CTGACTATGGTGCAC

CCTGACTATGGTGCA

ACCTGACTATGGTGC

 2. After sorting them lexicographically, the above

DNA sequence will be as follows.

ACCTGACTATGGTGC

ACTATGGTGCACCTG

ATGGTGCACCTGACT

CACCTGACTATGGTG

CCTGACTATGGTGCA

CTATGGTGCACCTGA

CTGACTATGGTGCAC

GACTATGGTGCACCT

GCACCTGACTATGGT

 3. BWT sequence is CGTGAACTTTGCCGA, and

I=3.

2.2 Move-to-Front Encoding
Move-to-Front algorithm [1] converts the data into a sequence

of integers, with the expectation that the values of integers are

small and could be effectively transformed using a statistical

coding algorithm. The MTF encoder retains a list of symbols,

called MTF list, which is initialized with all the symbols that

occur in the data to be compressed. Then, for each symbol

from the data, the encoder provides its position on MTF list in

the form of an integer and updates the MTF list. A currently

encoded symbol is moved from the current position in the

MTF list to the beginning of the list .The most important

property of this technique is that recently used symbols are

near to the beginning of the list. Equal symbols will

frequently appear close to each other in the data and therefore

these symbols will be converted to small integers. In general,

small integers appear more frequent so that they are encoded

in fewer bits than larger integers using a statistical coding like

the Huffman or the arithmetic coding. Move-to-front encoding

algorithm transforms a DNA sequence S into a sequence of

numbers, provided that the alphabet is known before hand.

Here is the algorithm for Move-to-front encoding method.

1. Initialize string E to contain each letter in the alphabet

once.

2. Read the letters of S one at a time. For a character A that

was just read, write down the index of A in E and move

A in E to the front of E. So E becomes different

permutations of the letters in the alphabet as S is

processed, and obtained a sequence of indices.

Here is an example of the encoding of the string

“GGGTTTAATTCCC” using the alphabet (A,C,G,T}.

Table 1 shows the Move-to-Front encoding table.

Table 1. Move-to-Front Encoding Table

Letter of

S
E

(before)

Index E

(after)

G

G

G

T

T

T

A

A

T

T

C

C

C

TACG

GTAC

GTAC

GTAC

TGAC

TGAC

TGAC

TGAC

ATGC

ATGC

TAGC

CTAG

CTAG

3

0

0

1

0

0

3

0

1

0

3

0

0

GTAC

GTAC

GTAC

TGAC

TGAC

TGAC

ATGC

ATGC

TAGC

TAGC

CTAG

CTAG

CTAG

Hence, the encoding is 3001003010300. One way to get good

compression is to first do move-to-front encoding on the

transformed string, then, do arithmetic or Huffman encoding

in combination with run-length encoding for zero strings.

2.3 Run Length Encoding
Run Length Encoding (RLE) compression technique [6] is

used when a given file contains too many redundant data or

long run of similar characters. The repeated string or

characters present in the input file or message is called a run

which is encoded into two bytes. The first byte represents the

value of the character in the run and the second byte contains

the number of times given character appears in the run.

This Run Length Encoding algorithm consists of replacing

large sequences of repeating data with only one item of this

data followed by a counter showing how many times this item

is repeated.

Algorithm for the general Run Length Encoding (RLE) is as

follows:

 Loop: count = 0

 REPEAT

 get next symbol

 count = count + 1

 UNTIL (symbol unequal to next one)

 output symbol

 IF count > 1

 output count

 GOTO Loop

Let’s see a sample DNA sequence as follows:

AAAAAAAAAAGGGACCCCTTTTTC

This DNA sequence length is 24 and there are lots of

repetitions. Using the Run Length Encoding (RLE) algorithm,

repetitive runs can be replaced with shorter symbol followed

by a counter.

The reduced DNA sequence is

A10G3A1C4T5C1

The length of this DNA sequence is 13, which is

approximately 70% of the initial length.

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.3, September 2017

13

2.4 Arithmetic Coding
Arithmetic coding has been efficiently developed in the place

of Huffman coding. In Huffman coding, every input symbol

has been replaced by a specific code whereas in arithmetic

coding, a stream of input symbols has been replaced by a

single floating-point output number. Depending on the length

of the message, more bits are needed in the output number.

Arithmetic coding is particularly constructive when dealing

with symbols with high probabilities. It is also useful that

output from an arithmetic coding process is a single number

varying from 0 to 1 , not including 1. This single number can

be uniquely decoded to create the exact stream of symbols

that has gone into its construction. In order to construct the

output number, the symbols being encoded should have a set

of probabilities assigned to them. Once the character

probabilities are known, the individual symbols need to be

assigned a range along a "probability line", which is

nominally 0 to 1. It does not matter what characters are

assigned to which segment of the range, as long as it is done

in the same manner by both the encoder and the decoder. Each

symbol is allocated the value in the range of 0-1 that matches

the probability appearance of the symbol. It is understood that

the symbol holds the values of all except the higher number.

Consequently, the last symbol has the range of values between

0.9-0.9999 and not 1[12]. In order to properly decode the first

character, the final coded message has to be a number greater

than or equal to the range of the first character of the actual

stream. The range, that this could fall in, should be maintained

to encode this number. So, after the first character is encoded,

the algorithm must continue with the next character in actual

stream. After the first character is encoded, the low and the

high of the first character now bound to the range for the

output number. The remaining of the encoding procedure is

that each new symbol to be encoded will further control the

possible range of the values. If it was the first number in the

text, then low and high ranges of values are set directly to

those values.

 Algorithm for the Arithmetic Coding is as follows:

begin

 count source symbols

 interval Ivalue: = new interval 0..1

 divide Ivalue according to rate of source symbols.

 readSymbol(X)

 while (X!=EOF) do

 begin

 new Ivalue := subinterval Ivalue matching X

 divide Ivalue according to rate of source symbols.

 readSymbol(X)

 end

 output(best number from Ivalue)

 end

2.5 Huffman Coding
Huffman coding, introduced by David Huffman in 1952 ,

compresses texts by assigning shorter codes to more

frequently used symbols and longer codes to less frequently

used ones. This coding is an entropy encoding algorithm used

for lossless data compression. A specific method in this

coding is used to choose the representation for each symbol,

resulting in a prefix-free code that expresses the most

common characters using shorter strings of bits. To create

Huffman code, the symbols present in the source file are

sorted in increasing order by frequency. Merging the two least

frequency used symbols into a new symbol can be constructed

and its frequency is the sum of the frequencies of its two child

symbols. In the way of replacement, a smaller set of symbols

is obtained and this operation n-1 times can be repeated until

all symbols have been merged. A node is created through

every merging operation in a binary tree. The left or right

choices on the path from root-to-leaf define the bit of the

binary code word for each symbol. Though the usage of

Huffman code is wide and frequent, these codes have three

major disadvantages. Firstly, two passes are required over the

document. Secondly, the coding table is stored along the

document in order to reconstruct it.

The approach of Huffman’s algorithm is illustrated in the

following plain text with 24 symbols.

 y z y x y x w z x y x z x w x w x y x y x x x y

Figure 1 illustrates an example of building the Huffman tree.

The algorithm starts with a list of nodes ‘x’, ‘y’, ‘z’, and ‘w’,

with frequencies 11, 7, 3, and 3 respectively. The frequencies

of each symbol are calculated and a prefix-free tree labeled

with 0 (left child) or 1 (right child) shown in figure1 is created

for these symbols.

Fig 1: Prefix-Free Tree

From the Prefix-Free Tree, the algorithm creates a prefix code

for each symbol by traversing the binary tree from the root to

the end node, which corresponds to the symbol. It gives 0 for

a left branch and 1 for a right branch. The Huffman algorithm,

using the Huffman tree from Figure 1, assigns codes ‘0’, ‘11’,

‘100’, and ‘101’ to symbols ‘x’, ‘y’, ‘z’, and ‘w’ respectively.

The generated Prefix code table is given below in Table 2:

Table 2. Prefix Code Table

Symbol Frequency Codeword

x 11 0

y
 7 11

z 3 100

w 3 101

The plaintext is encoded with 43 bits as follows:

1110011011010110001101000101010101101100011

In standard text storage, 8 bits per symbol are given and

hence, there are 192 bits required for the above plaintext.

0

w z

1

1

1

0

0

y

x

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.3, September 2017

14

With the code table of Table 2, only 43 bits are achieved.

Moreover, the Huffman tree with the Huffman codes for

symbols must be stored together with the compressed output.

This information is needed for the decoder and it is usually

placed in the header of a compressed file.

3. PERFORMANCE ANALYSIS
The compression algorithm consists of two components, an

encoding algorithm that takes input data and generates a

“compressed” representation and a decoding algorithm that

reconstructs the original data from the compressed

representation. To experiment the BWT based algorithms, a

standard set of DNA and protein sequences are compressed

with these algorithms, and results are compared with the other

standard general purpose compressors.

The following 7 benchmark standard data set of DNA

sequences are used in this paper for the purpose of analysis:

 One chloroplast genomes (CHMPXX)

 Four human genes (HUMDYSTROP,

HUMHDABCD, HUMHBB and HUMHPRTB)

 Two virus genomes (HEHCMVCG and VACCG).

The following 4 standard data set of protein sequences are

used for the purpose of analysis:

 Haemophilus Influenzae(HI)

 Human(HS)

 Methanococcus Janaschii(MJ)

 Saccharomyces Cerevisciae(SC)

The above data sets are used by many researchers who work

in DNA sequence compression [5]. The DNA Sequences can

be downloaded from the GENBANK database: The DNA

sequences are made available in FASTA file format in DNA

databases which can also retrieved by any text processor. The

chemical composition of the DNA is the same for all living

organisms [10]. The DNA of every living organism contains

four basic nucleotide bases: adenine, cytosine, guanine, and

thymine, usually abbreviated using the symbols A, C, G and

T respectively [11]. A typical structure of DNA sequence file

is that in the appearance of the nucleotide bases having no

spaces and an end of line symbol, with a restriction that a

nucleotide may appear only nine consecutive times.

Efficiency of the proposed method is measured in terms of

bits per base (BPB)[9]. The main concern of the compression

algorithm for these sequences is with the compaction ability

but not consider with the time taken for the compression.

Table 3. Compression ratio of the general purpose

compression algorithm for DNA Sequences

Sequence

Name

File Size

(Bytes)

WinRA

R

(BPB)

Gzip

(BPB)

Bzip

(BPB)

Chmpxx 121024 2.25 2.28 2.12

Humhbb 73308 2.22 2.25 2.15

Humghcsc 66495 2.32 --- ---

Humhdabcd 58864 2.19 2.24 2.07

Humhprtb 56737 2.23 2.27 2.09

Hehcmvcg 229354 2.32 2.33 2.17

Vaccg 191737 2.23 2.25 2.09

Average 2.25 2.27 2.16

Proteins are sequences consumed from amino acids [13].

There are 20 kinds of amino acids except for some abnormal

ones; hence the size of alphabet of proteins is 20. It is

recognized that the compression of proteins is also very

difficult .Since the size of alphabet is 20, consequently the

storage space required for proteins is equal to or less than log2

(20) = 4.322 per symbol. The compression ratios by the

widely used compression algorithms compress or gzip are

more than log2 (20) = 4.322 bits per symbol. The unit of

compression ratio for protein symbol is bit per symbol.

Compression results are best when an algorithm can compress

a sequence less than log2 (20) =4.322 bits per symbol. The

sequence file based on DNA sequence and protein sequence is

passed through the BWT transform and then piped through a

move-to-front stage, then a run length encoder stage, and

finally an entropy encoder, normally arithmetic coding or

Huffman Coding. In this section, to compare the performance

of the proposed idea, the BWT transform, move-to-front, run

length encoder and arithmetic coding is used.

Table 4. Compression ratios of the BWT based algorithm

for DNA Sequences

Seq

Name

Compressed File size

BWT,MTF,

RLE,ARI

BWT,MTF,

ARI

BWT,ARI

Bytes BPB Bytes BPB Bytes BPB

Chmpxx 33133 2.19 30323 2.00 28622 1.89

Humhbb 20255 2.21 18505 2.02 18371 2.00

Humghc

sc
15582 1.87 13314 1.60

16911
2.03

Humhda

bcd
15910 2.16 14747 2.00

15030
2.04

Humhprt

b
15507 2.19 14274 2.01

14320
2.02

Hehcmv

cg
64269 2.24 58284 2.03

57801
2.02

Vaccg 52172 2.18 48345 2.07 46816 1.95

Average 2.15 1.96 1.99

Table 5. Compression ratio of the general purpose

compression algorithm for Protein Sequences

Seq

Name

Seq.

Length

(Bytes)

Compre

ss

(Bps)

Bzip2

(Bps)

Gzip9

(Bps)

PPM

+

HI 509519 4.7702 4.324 4.6712 4.862

HS 3295751 4.7177 4.256 4.6054 4.641

MJ 448779 4.6459 4.269 4.5879 4.711

SC 2900352 4.7761 4.300 4.6397 4.686

Average

(BPS)
 4.727475 4.28725 4.62605 4.725

Table 6. Compression ratios of the BWT based algorithm

for Protein Sequences

Sequence

Name

BWT, MTF,

RLE, ARI (BPS)

BWT, MTF,

ARI (BPS)

BWT,

ARI (BPS)

 (HI) 4.4721 4.3039 4.1843

 (HS) 4.3984 4.2438 4.1581

 (MJ) 4.4253 4.2568 4.0959

 (SC) 4.4603 4.3009 4.1897

Average

(BPS)
4.439025 4.27635 4.157

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.3, September 2017

15

The actual command line to perform the compression

sequence will look like this:

BWT < input-file | MTF | RLE | ARI > output-file

 The decompression is just the reverse process and command

line to perform the decompression sequence look like this

UNARI input-file | UNRLE | UNMTF |UNBWT > output-

file

According to the above said procedure, the average

compression ratio in terms of BPB is 2.15 for the standard

DNA files. Since the method compresses the DNA sequences

very badly takes more than 2 BPB. The average compression

ratio in terms of BPS is 4.439025 for the protein files. Since

the method compresses the sequences very badly takes more

than 2 BPB for DNA and more than log2 (20) = 4.322 per

symbol for protein sequences.

Therefore the procedure given below is tried out to improve

the compression ratio of the DNA and protein files. The

sequence file is passed through the BWT transform and then

piped through a move-to-front stage, and finally an entropy

encoder, normally arithmetic coding.

The actual command line to perform the compression

sequence will look like this:

BWT < input-file | MTF | ARI > output-file

The decompression is just the reverse process and command

line to perform the decompression sequence look like this

UNARI input-file | UNMTF |UNBWT > output-file

The procedure without run length encoding gives slightly

better compression improvement when compared with BWT

then piped through a move-to-front stage, then a run length

encoder stage, and finally an arithmetic coding. Again to get

better improvement of DNA files, the sequence file is passed

through the BWT transform and then applied an entropy

encoder called arithmetic coding. This procedure gives the

average compression ratio of 1.99 BPB for DNA files and

4.157 BPS for protein sequences.

The comparative compression ratio of the existing general

purpose compression algorithm like WinRAR, GZIP and

BZIP of the DNA test corpus are shown in Table 3. The

detailed compression ratios in terms of BPB for the Burrows

Wheeler Transform based algorithm of the DNA test corpus

are shown in Table 4. The test results of protein sequences are

shown in Table 5 and 6. It shows that the combination of

Borrow Wheeler Transformation, move-to-front and

arithmetic coding works better when compared with the

existing general purpose compression algorithms.

4. CONCLUSIONS
After doing a detail study on various standard general purpose

compression algorithms it is seen that a great improvement on

DNA and protein sequences compression ratio after

preprocessing with Burrows Wheeler Transformation. With

these results it is understood that the combination of Burrows

Wheeler Transform and Arithmetic Encoding gives us a best

compression method for DNA and protein compression. The

simplicity and flexibility of BWT based Compress algorithms

could make it an invaluable tool for DNA compression in

clinical research. Since the Standard general purpose

compression algorithms are unsuccessful to get a good

compression ratio, it is better to use pattern recognition

method to create new compression algorithm for DNA and

protein sequences to improve the compression ratio.

5. REFERENCES
[1] Arnavut. Z, “Move-to-Front and Inversion Coding”,

Proceedings of Data Compression Conference, IEEE

Computer Society, Snowbird, Utah, pp. 193- 202, March

2000.

[2] M.P.Bhuyan, V.Deka, S.Bordoloi, “Burrows Wheeler

based data compression and secure transmission”,

IJRET: International Journal of Research in Engineering

and Technology, Volume: 02 Special Issue: 02 | Dec-

2013.

[3] M. Burrows, and D.J. Wheeler, “A Block-sorting

Lossless Data Compression Algorithm,” Digital Systems

Research Center Research Report 124, 1994.

[4] Chun Li , Huan Liu, Junhong Liu, Yuping Qin, Zhifu

Wangb, “A Burrows-Wheeler Transform based method

for DNA sequence comparison, Computational Biology

and Bioinformatics, 2(3): 33-37, 2014.

[5] Jolanta Kawulok, “Approximate String Matching for

Searching DNA Sequences”, International Journal of

Bioscience, Biochemistry and Bioinformatics, Vol. 3,

No. 2, March 2013.

[6] Jouni Sir´en, Niko V¨alim¨aki, Veli M¨akinen, and

Gonzalo Navarro, “Run-Length Compressed Indexes Are

Superior for Highly Repetitive Sequence Collections”,

String Processing and Information Retrieval , pp 164-

175, 2008.

[7] Juha K¨arkk¨ainen, “Fast BWT in Small Space by

Blockwise Suffix Sorting”, Preprint submitted to

Elsevier Science, 16 March 2007.

[8] Nelson M, “Data Compression with the Burrows-

Wheeler Transform”, Dr. Dobb’s Journal, Sept. 1996.

[9] Rahul Vishwakarma1 and Newsha Amiri, “High Density

Data Storage in DNA Using an Efficient Message

Encoding Scheme”, International Journal of Information

Technology Convergence and Services (IJITCS) Vol.2,

No.2, April 2012.

[10] RAFAŁ POKRZYWA, “Searching for Unique DNA

Sequences with the Burrows-Wheeler Transform”,

Biocybernetics and Biomedical Engineering, Volume 28,

Number 1, pp. 95–104, 2008.

[11] Sebastian Wandelt, Marc Bux, and Ulf Leser,” Trends in

Genome Compression”, Knowledge Management in

Bioinformatics, Institute for Computer Science,

Humboldt-Universit• at zu Berlin, Germany ,June 4,

2013.

[12] Witten, I.H., R.M. Neal and J.G. Cleary, “Arithmetic

coding for data compression”, Commun.ACM, 30: pp :

520-540,1987.

[13] Yong Zhang, Amar Mukherjee, Matt Powell and Tim

Bell, “DNA Sequence Compression Using the Burrows-

Wheeler Transform”, Proceedings of the IEEE Computer

Society Bioinformatics Conference, 2002.

IJCATM : www.ijcaonline.org

https://link.springer.com/book/10.1007/978-3-540-89097-3

