
International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.7, September 2017

23

Incremental Temporal Mining using Incremental TPMiner

and Incremental P-TPMiner Algorithms

R. V. Argiddi
Assistant Professor

Department of Computer Science, WIT
Solapur University

Solapur-413006, India

Sonali Vijaykumar Rampure
P.G. Student

Department of Computer Science, WIT
Solapur University

Solapur-413006, India

ABSTRACT

Temporal data mining is one type of "predictive”. Temporal

Association mining is sequential mining. We usually predict

what will happen next or what is probability that certain thing

happen Sequential pattern mining is one important case of

data mining. Most of sequential pattern mining algorithm

works on static data which deals with the database should not

change. But the databases in real world application do not

have static data rather they have incremental database. There

are some applications using temporal event data have used to

discovering patterns from events. There are two types of

interval-based patterns: Temporal pattern and Probabilistic

temporal pattern are proposed. This paper attempts to provide

two algorithms Incremental Temporal Pattern Miner (TP-

Miner) and Probabilistic Temporal Pattern Miner (P-TP

Miner).In this project, apply proposed algorithms to real

datasets to make the comparison of Incremental temporal

mining and Non-incremental temporal mining.

General Terms

Temporal Mining, Incremental Temporal Mining, Candidate

generate.

Keywords

Sequential pattern, Incremental Temporal Pattern, Interval

based pattern, Data mining.

1. INTRODUCTION
In many real time applications, sequence databases are

updated with time incrementally. Based on that sequence

database with time many sequential patterns are discovered.

Re-mining sequential patterns from scratch each time is

inefficient and not feasible if some new sequences are grow or

added into the database. Incremental temporal mining which

is nothing but the issue of maintaining that discovered

patterns over time in the presence of more items being added

into the database. Because of the mostly appending or

updating time-series data, incremental mining would be very

effective and efficient. Temporal Data Mining is the process

of Knowledge Discovery in Temporal Databases that

discovered temporal patterns over the temporal data, and

Temporal Data Mining Algorithm is an algorithm that

enumerates temporal patterns over temporal data .That

temporal data is real time or synthesis data. By analyzing

temporal data and finding temporal patterns is concerned with

temporal data mining [10].Temporal databases are categorized

by month, day of week or by season, time interval etc.

Temporal databases are continuously updated or appended so

that the discovered rules need to be updated. Re-running the

temporal mining algorithm every time is inefficient since it

ignores previously discovered patterns and repeats the work

done previously. Incremental mining algorithms can

significantly increase the speed of a task because much of the

work that was performed for previous tasks can be reused in

successive tasks. Since Incremental mining algorithms have

more speed than non-incremental mining algorithm. Non-

incremental algorithm may not be applicable for extremely

large data sets but an incremental algorithm may be

applicable. Therefore in this project proposed incremental

Temporal mining (TP) and Probabilistic Temporal mining

(P-TP).Incremental algorithms are faster than non -

incremental because they re-mine their previous task and use

the results .Both TP and P-TP are developed efficiently and

they work effectively. Incremental mining algorithms can

significantly increase the speed of a task because much of the

work that was performed for previous calls tasks can be

reused in successive searches. These algorithms are most

advantageous when the successive tasks that the incremental

algorithm is run on are similar to previous tasks. In this

training data is presented one at a time. Incremental mining

algorithms for mining frequent patterns that use information

collected during earlier mining process to cut down the cost of

finding new pattern in whole database. Since mining every

time the database grows, it becomes inefficient and hence the

algorithm for incremental mining has to be proposed.

2. LITERATURE REVIEW
Y. Li, J. Bailey, L. Kulik and J. Pei,[5] In this paper, there is

pattern mining for uncertain sequences and introduces

probabilistic frequent spatial-temporal sequential patterns

with gap constraints. These patterns are important for the

discovery of knowledge given data. They proposed a dynamic

programming approach for computing the frequentness

probability of these patterns, which has linear time

complexity, and it is embedding into pattern algorithms using

both breadth-first search (BFS) and depth-first search (DFS)

strategies. Temporal sequential pattern concept and

frequencies are helpful for this incremental temporal mining

algorithm and probabilistic temporal mining algorithm. Linear

complexity is helpful to many search algorithms. These

strategies are related to data structure.

A. Wong, D. Zhuang, G. Li, and E. Lee,[7] This paper

improves the output quality by removing two types of

redundant patterns. The first concept is to remove redundant

patterns that are not delta closed the notion of delta tolerance

closed item set is employed. The second concept is to capture

redundant patterns statistically induced patterns is proposed

yet their significance is induced by their strong patterns.

Yi-Cheng Chen, Wen-Chih Peng and Suh-Yin Lee, [1] In this

paper, two algorithms (TPMiner and P-TPMiner) are

developed to discover temporal pattern, occurrence-

probabilistic temporal pattern and duration-probabilistic

temporal pattern using two novel representations endtime and

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.7, September 2017

24

endpoint representation. These TP-Miner and P-TPMiner are

used to determine patterns which are temporal based on real

time dataset or synthesis dataset. Based on application choice

of dataset is determined and algorithms applied on it.

Y. Chen, C. Chen, W. Peng and W. Lee, [2] In this paper, a

novel algorithm, namely, Correlation Pattern

Miner(CoPMiner), is developed to capture the usage patterns

and correlations among appliances probabilistically

effectively and efficiently. Search space is reduced by using

CoPMiner. There are some optimization techniques which are

based on CoPMiner used to minimize search space.

H. Kim, M. Marwah, M. Arlitt, G. Lyon and J. Han, [10] This

paper results indicate that a conditional factorial hidden semi-

Markov model which integrates additional features related to

when and how appliances are used in the home and more

accurately represents the power use of individual appliances,

outperforms the other unsupervised disaggregation methods.

Y. Chen, J. Jiang, W. Peng and S. Lee, [12]In this paper,

Mining temporal patterns from time interval based data is a

difficult problem since processing of complex relations

among intervals may require generating and examining large

amount of intermediate subsequences. Therefore to remedy

this issue incision strategy is a technique for coincidence

representation.

J.Kolter, and M. Johnson, [3] In this paper, a public data set

REDD that is The Reference Energy Disaggregation Data Set

which is real time dataset used for many data mining

applications. This REDD dataset is used to determine

temporal pattern because dataset have power readings. Using

this real time dataset algorithm can produce pattern based on

start time and end time by applying temporal pattern

algorithm.

3. METHODOLOGY

3.1 Association rules mining
It is intended to identify strong rules discovered in databases

using two different measures of interestingness. The first one

is support which generates frequent item set from the

provided database and the other one is confidence which is

focuses on rule generation. In this project support count for

frequent item sets are calculated and used re-mining next item

sets. Calculated support count is used to determining pattern

support count

3.2 Frequent item sets

A set of attributes is termed as frequent item set if the

occurrence of the set within the database is more than a user

given threshold. Support and Confidence terms are described

below using its formula.

Support- Support determines how often a given rule is

applicable to a given data set.

 , s (X->Y) = ()

Confidence- Confidence determines how frequently items in

Y appear in transactions that contain X.

Confidence, c(X->Y) =

The proposed system Fig I. shows that association rule mining

process will apply on original data and generated data will

stored in intermediate data. This association rules mining

process will also produces original pattern. Incremental

association rule mining process will apply on incremental data

and generated data will stored in intermediate data. This

Incremental association rules mining process will produces

updated pattern based on available knowledge (obtained from

mining of previously Intermediate stored data) and original

pattern. The incremental mining algorithm uses incremental

mining technique is to re-run the mining algorithm on the only

updated database. The proposed algorithm Incremental

Temporal Pattern Miner first transforms the temporal database

into the endpoint representation for determining patterns.

It then read the intermediate results from

InetrmediateDataManager. InetrmediateDataManager saves

intermediate result to reuse it in incremental mining. Next, it

will scan the database to calculate the support count of each

endpoint concurrently. Users are taking threshold as input

from user. Incremental TPMiner removes infrequent

endpoints below the given minimum threshold which is

entered from user. For each frequent starting endpoint ,build

the projected database and call minePatterns recursively to

discover sets of all temporal patterns. Save intermediate result

to reuse it in incremental mining so that it writes intermediate

results in InetrmediateDataManager.

In minePattern, for a prefix it scans its projected database

once to discover all frequent endpoints and remove infrequent

ones. It computes support for frequent endpoint .Frequent

endpoint can be appended to the original prefix to generate a

new frequent sequence. If all endpoints in a frequent endpoint

sequence appear in pairs every starting (finishing) endpoint

has a corresponding finishing (starting) endpoint, now output

this frequent endpoint sequence. Use calculated support count

to remine previous count support. Finally, construct the

projected database with the frequently extended prefixes and

recursively call minePattern until the prefixes can no longer

be extended.

Algorithm: TPMiner

Input : DB is Temporal Database ,min_threshold is

minimum support threshold

Output: TP : Temporal Pattern, Support

1. Get real time database for incremental temporal

mining.

2. Read Intermediate results from

IntermediateDataManager.

3. Transform the DB into endpoint representation.

4. Find all frequent endpoints in DB.

5. Call minePatterns (DB).

6. Call ComputeSupport(DB, patterns)

7. Calculate frequency of endpoints and remove

infrequent endpoints in databse those are less than

8. min_threshold.

9. FE <- all frequent “starting endpoints”;

10. for each s Є FE do

11. Generate candidates DB|@;

12. Call TPMiner algorithm

13. Produce TP

14. Write an Intermediate Result.

15. end

Procedure minePatterns (@, DB|@)

16. for each s Є FE do
17. append s to @ to form @’
18. if @’ is a temporal pattern then // if all endpoints

appear in pair in @’
19. TP ← TP ∪ @’ ;
20. DB|@’ ← DB_construct (DB|@, @’); //

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.7, September 2017

25

21. ComputeSupport (DB|@ , patterns); // calculate
support count

22. end

Procedure ComputeSupport (DB|@ , patterns)

for each endpoint sequence q Є DB|@ do

23. mark a “stop_position” at the first (leftmost)

finishing endpoint which has corresponding starting

endpoint in @ ;

24. Count the support of every endpoint from the

beginning of q to the stop_position of q.

25. end

Procedure Generate Candidates

26. temporal_seq ← ;

27. find all postfix sequences of @’ in DB|@ to form

DB|@’ ;

28. for each postfix sequence q Є DB|@’ do

29. eliminate the “finishing points” in q which has no

corresponding “starting point” in @’ ; // postfix-

pruning strategy

30. temporal_seq ← temporal_seq ∪ q;

31. return temporal_seq

32. end

Fig 1 Flow of proposed work

The proposed algorithm Incremental Probabilistic Temporal

Pattern Miner (P-TPMiner) first transforms the temporal

database into the endpoint representation. It then read the

intermediate results from InetrmediateDataManager.

InetrmediateDataManager saves intermediate result to reuse it

in incremental mining. Next, it will scan the database to

calculate the support count of each endpoint concurrently.

Users are taking threshold as input from user. Incremental

TPMiner removes infrequent endpoints below the given

minimum threshold which is entered from user. For each

frequent starting endpoint now build the projected database

and call minePatterns recursively to discover sets of all

temporal patterns. In this project save intermediate result to

reuse it in incremental mining so that it writes intermediate

results in InetrmediateDataManager.

In minePattern, for a prefix it scans its projected database

once to discover all frequent endpoints and remove infrequent

ones.It compute support for frequent endpoint .Frequent

endpoint can be appended to the original prefix to generate a

new frequent sequence. If all endpoints in a frequent endpoint

sequence appear in pairs every starting (finishing) endpoint

has a corresponding finishing (starting) endpoint, now output

this frequent endpoint sequence. Use calculated support count

to remine previous count support. Finally, construct the

projected database with the frequently extended prefixes and

recursively call minePattern until the prefixes can no longer

be extended.

The proposed algorithm Incremental Probability Temporal

Pattern Miner (P-TPMiner) first transforms the temporal

database into the endpoint representation. It then read the

intermediate results from InetrmediateDataManager. Now,

save intermediate result to reuse it in incremental mining.

Next, it will scan the database to calculate the support count

of each endpoint concurrently. Users are taking threshold as

input from user. Incremental P-TPMiner removes infrequent

endpoints below the given minimum threshold. For each

frequent starting endpoint build the projected database and

call minePatterns recursively to discover sets of all temporal

patterns. Save intermediate result to reuse it in incremental

mining so that it writes intermediate results in

InetrmediateDataManager. In minePattern, for a prefix it

scans its projected database once to discover all frequent

endpoints and remove infrequent ones. It compute support for

frequent endpoint .Frequent endpoint can be appended to the

original prefix to generate a new frequent sequence. If all

endpoints in a frequent endpoint sequence appear in pairs

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.7, September 2017

26

every starting (finishing) endpoint has a corresponding

finishing (starting) endpoint, now output this frequent

endpoint sequence. Use calculated support count to remine

previous count support. Finally, construct the projected

database with the frequently extended prefixes and recursively

call minePattern until the prefixes can no longer be extended.

Algorithm: P-TPMiner

Input: DB is Temporal Database, min_threshold is

minimum support threshold.

Output: TP : Temporal pattern,Support.

1. Get real time database for temporal mining.

2. Read Intermediate results.

3. Transform DB into endpoint representation.

4. Find all frequent endpoints.

5. Call minePatterns (DB).

6. Call ComputeProbablities(DB,patterns)

7. Calculate frequency of endpoints and remove

infrequent endpoints in databse those are less than

min_threshold.

8. FE <- all frequent “starting endpoints”;

9. for each s Є FE do

10. Generate Candidates DB|s;

11. Call P-TPMiner

12. Produce TP

13. Write an Intermediate Result.

14. end

Procedure minePatterns (@, DB|@)

15. for each s Є FE do
16. append s to @ to form @’
17. if @’ is a temporal pattern then // if all endpoints

appear in pair in @’
18. TP ← TP ∪ @’ ;
19. DB|@’ ← DB_construct (DB|@, @’);
20. ComputeProbablities (DB|@ , patterns); //calculate

support count.
21. end

Procedure ComputeProbablities (DB|@ , patterns)

22. for each endpoint sequence q Є DB|@ do

23. Mark a “stop_position” at the first (leftmost)

finishing endpoint which has corresponding starting

endpoint in @ ;

24. Count the frequency of every endpoint from the

beginning of q to the stop_position of q.

25. Calculate probability of every point representation .

26. end..

Procedure Generate Candidates

27. temporal_seq ← ;

28. find all postfix sequences of @’ in DB|@ to form

DB|@’ ;

29. for each postfix sequence q Є DB|@’ do

30. eliminate the “finishing points” in q which has no

corresponding “starting point” in @’ ; // postfix-

pruning strategy

31. temporal_seq ← temporal_seq ∪ q;

32. return temporal_seq

33. end

4. EXPERIMENTAL RESULTS
Time complexity analysis and experimental results show that

the incremental algorithm is superior to non-incremental

algorithms when dealing with large data sets. Both algorithms

are proposed this incremental strategy by saving intermediate

results (IR).This IntermediateDataManager runs these

incremental algorithms in restartable mode. For saving

intermediate results IntermediateDataManager is used to run

this algorithm in restartable mode. By extracting intermediate

results we are mining previous results with next successive

tasks. The Fig II shows that execution time requires for

incremental mining is less than execution time require for

non-incremental mining. Incremental temporal mining is

applied on many real world applications. Testing is performed

on real time dataset with minimum support threshold. The

system is developed using Java platform. The below result

analysis is comparison of Non-incremental temporal mining

and Incremental temporal mining.

Fig.2 Result Analysis

5. CONCLUSION
We are discussed Incremental temporal mining with non-

incremental algorithm. In this system we have proposed the

incremental algorithms and how these algorithms are run in

restartable mode. Both incremental Temporal Pattern (TP) and

Probabilistic-Temporal Pattern (P-TP) are developed

efficiently and effectively. These both algorithms are reusing

previous results so that these algorithms don’t require to start

candidate generation for their previous tasks. Execution time

requires for incremental mining is less than execution time

require for non-incremental mining. The experimental results

shows that overall performance of these two Temporal Pattern

and Probabilistic-Temporal Pattern are better than existing TP

and P-TP algorithms. Chronological order is an issue of

incremental temporal mining.

6. ACKNOWLEDGMENTS
We are thankful to Dr. Mrs.S.S.Apte for providing necessary

guidance concerning projects implementation.

7. REFERENCES
[1] Yi-Cheng Chen, Wen-Chih Peng and Suh-Yin Lee,

“Mining Temporal Patterns in Time Interval Based Data”

IEEE Transactions on Knowledge and Data Engineering,

1041-4347 (c) 2015 IEEE.

[2] Chen,C.Chen,W.Peng and W. Lee, “Mining Correlation

Patterns among Appliances in Smart Home

Environment,” IEEE 18th Pacific-Asia Conference in

Knowledge Discovery and Data Mining, Advances in

Knowledge Discovery and Data Mining (PAKDD’14),

pp. 210-221, 2014.

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.7, September 2017

27

[3] J.Kolter, and M. Johnson, “REDD: A public data set for

energy disaggregation research,” KDD workshop on

Data Mining Applications in Sustainability

(SustKDD’11), pp. 1-6, 2011.

[4] S. van Schaik, D. Olteanu and R. Fink, “ENFrame: A

Platform for Processing Probabilistic Data,” The 17th

International Conference on Extending Database

Technology (EDBT’14), pp. 355-366,2014.

[5] Y. Li, J. Bailey, L. Kulik and J. Pei, “Mining Probabilistic

Frequent Spatio-Temporal Sequential Patterns with Gap

Constraints from Uncertain Databases,” The 13th

International Conference on Data Mining (ICDM’13),

pp. 448-457, 2013.

[6] R.Sadasivam and K. Duraiswamy, “Efficient Method to

Discover Interval-based Sequential Patterns,” Journal of

Computer Science, vol. 9, issue 2, pp. 225-234, 2013.

[7] A.Wong, D. Zhuang, G. Li, and E. Lee, “Discovery of

Closed Patterns and Noninduced Patterns from

Sequences,” IEEE Transactions on Knowledge and Data

Engineering, vol.24, no. 8, pp.1408-1421, 2012.

[8] A.Zakour, S. Maabout, M. Mosbah and M. Sistiaga,

“Uncertainty Interval Temporal Sequences Extraction,”

International Conference on Information Systems

Technology and Management (ICISTM’ 12), pp. 259-

270, 2012.

[9] Z. Zhao, D. Yan and W. Ng, “Mining Probabilistically

Frequent Sequential Patterns in Large Uncertain

Databases,” The 15th International Conference on

Extending Database Technology (EDBT’12), pp. 74-85,

2012.

[10] H. Kim, M. Marwah, M. Arlitt, G. Lyon and J. Han,

“Unsupervised disaggregation of low frequency power

measurements,” The 11th SIAM International

Conference on Data Mining (SDM’11),pp. 747–758,

2011.

[11] M. Muzammal and R. Raman, “Mining Sequential

Patterns from Probabilistic Databases,” The 15th Pacific-

Asia Conference in Knowledge Discovery and Data

Mining, Advances in Knowledge Discovery and Data

Mining, (PAKDD’11), pp. 210-221, 2011.

[12] Yi-Cheng Chen, Ji-Chiang Jiang, Wen-Chih Peng and

Suh-Yin Lee,”An Efficient Algorithm for Mining Time

Interval-based Patterns in Large Databases”,(CIKM’10),

October 26–30, 2010 2010 ACM.

IJCATM : www.ijcaonline.org

