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ABSTRACT 

Temporal data mining is one type of "predictive”. Temporal 

Association mining is sequential mining. We usually predict 

what will happen next or what is probability that certain thing 

happen Sequential pattern mining is one important case of 

data mining. Most of sequential pattern mining algorithm 

works on static data which deals with the database should not 

change. But the databases in real world application do not 

have static data rather they have incremental database. There 

are some applications using temporal event data have used to 

discovering patterns from events. There are two types of 

interval-based patterns: Temporal pattern and Probabilistic 

temporal pattern are proposed. This paper attempts to provide 

two algorithms Incremental Temporal Pattern Miner (TP-

Miner) and Probabilistic Temporal Pattern Miner (P-TP 

Miner).In this project, apply proposed algorithms to real 

datasets to make the comparison of Incremental temporal 

mining and Non-incremental temporal mining. 

General Terms 

Temporal Mining, Incremental Temporal Mining, Candidate 

generate. 

Keywords 

Sequential pattern, Incremental Temporal Pattern, Interval 

based pattern, Data mining. 

1. INTRODUCTION 
In many real time applications, sequence databases are 

updated with time incrementally. Based on that sequence 

database with time many sequential patterns are discovered. 

Re-mining sequential patterns from scratch each time is 

inefficient and not feasible if some new sequences are grow or 

added into the database. Incremental temporal mining which 

is nothing but the issue of maintaining that discovered 

patterns over time in the presence of more items being added 

into the database. Because of the mostly appending or 

updating time-series data, incremental mining would be very 

effective and efficient. Temporal Data Mining is the process 

of Knowledge Discovery in Temporal Databases that 

discovered temporal patterns over the temporal data, and 

Temporal Data Mining Algorithm is an algorithm that 

enumerates temporal patterns over temporal data .That 

temporal data is real time or synthesis data. By analyzing 

temporal data and finding temporal patterns is concerned with 

temporal data mining [10].Temporal databases are categorized 

by month, day of week or by season, time interval etc. 

Temporal databases are continuously updated or appended so 

that the discovered rules need to be updated. Re-running the 

temporal mining algorithm every time is inefficient since it 

ignores previously discovered patterns and repeats the work 

done previously. Incremental mining algorithms can 

significantly increase the speed of a task because much of the 

work that was performed for previous tasks can be reused in 

successive tasks. Since Incremental mining algorithms have 

more speed than non-incremental mining algorithm. Non-

incremental algorithm may not be applicable for extremely 

large data sets but an incremental algorithm may be 

applicable. Therefore in this project proposed incremental 

Temporal mining (TP) and Probabilistic Temporal mining   

(P-TP).Incremental algorithms are faster than non -

incremental because they re-mine their previous task and use 

the results .Both TP and P-TP are developed efficiently and 

they work effectively. Incremental mining algorithms can 

significantly increase the speed of a task because much of the 

work that was performed for previous calls tasks can be 

reused in successive searches. These algorithms are most 

advantageous when the successive tasks that the incremental 

algorithm is run on are similar to previous tasks. In this 

training data is presented one at a time. Incremental mining 

algorithms for mining frequent patterns that use information 

collected during earlier mining process to cut down the cost of 

finding new pattern in whole database. Since mining every 

time the database grows, it becomes inefficient and hence the 

algorithm for incremental mining has to be proposed. 

2. LITERATURE REVIEW 
Y. Li, J. Bailey, L. Kulik and J. Pei,[5] In this paper, there is 

pattern mining for uncertain sequences and introduces 

probabilistic frequent spatial-temporal sequential patterns 

with gap constraints. These patterns are important for the 

discovery of knowledge given data. They proposed a dynamic 

programming approach for computing the frequentness 

probability of these patterns, which has linear time 

complexity, and it is embedding into pattern algorithms using 

both breadth-first search (BFS) and depth-first search (DFS) 

strategies. Temporal sequential pattern concept and 

frequencies are helpful for this incremental temporal mining 

algorithm and probabilistic temporal mining algorithm. Linear 

complexity is helpful to many search algorithms. These 

strategies are related to data structure. 

A. Wong, D. Zhuang, G. Li, and E. Lee,[7] This paper 

improves the output quality by removing two types of 

redundant patterns. The first concept is to remove redundant 

patterns that are not delta closed the notion of delta tolerance 

closed item set is employed. The second concept is to capture 

redundant patterns statistically induced patterns is proposed 

yet their significance is induced by their strong patterns. 

Yi-Cheng Chen, Wen-Chih Peng and Suh-Yin Lee, [1] In this 

paper, two algorithms (TPMiner and P-TPMiner) are 

developed to discover temporal pattern, occurrence-

probabilistic temporal pattern and duration-probabilistic 

temporal pattern using two novel representations endtime and 
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endpoint representation. These TP-Miner and P-TPMiner are 

used to determine patterns which are temporal based on real 

time dataset or synthesis dataset. Based on application choice 

of dataset is determined and algorithms applied on it. 

Y. Chen, C. Chen, W. Peng and W. Lee, [2] In this paper, a 

novel algorithm, namely, Correlation Pattern 

Miner(CoPMiner), is developed to capture the usage patterns 

and correlations among appliances probabilistically 

effectively and efficiently. Search space is reduced by using 

CoPMiner. There are some optimization techniques which are 

based on CoPMiner used to minimize search space. 

H. Kim, M. Marwah, M. Arlitt, G. Lyon and J. Han, [10] This 

paper results indicate that a conditional factorial hidden semi-

Markov model which integrates additional features related to 

when and how appliances are used in the home and more 

accurately represents the power use of individual appliances, 

outperforms the other unsupervised disaggregation methods. 

Y. Chen, J. Jiang, W. Peng and S. Lee, [12]In this paper, 

Mining temporal patterns from time interval based data is a 

difficult problem since processing of complex relations 

among intervals may require generating and examining large 

amount of intermediate subsequences. Therefore to remedy 

this issue incision strategy is a technique for coincidence 

representation. 

J.Kolter, and M. Johnson, [3] In this paper, a public data set 

REDD that is The Reference Energy Disaggregation Data Set 

which is real time dataset used for many data mining 

applications. This REDD dataset is used to determine 

temporal pattern because dataset have power readings. Using 

this real time dataset algorithm can produce pattern based on 

start time and end time by applying temporal pattern 

algorithm. 

3. METHODOLOGY 

3.1 Association rules mining 
It is intended to identify strong rules discovered in databases 

using two different measures of interestingness. The first one 

is support which generates frequent item set from the 

provided database and the other one is confidence which is 

focuses on rule generation. In this project support count for 

frequent item sets are calculated and used re-mining next item 

sets. Calculated support count is used to determining pattern 

support count  

3.2 Frequent item sets  

A set of attributes is termed as frequent item set if the 

occurrence of the set within the database is more than a user 

given threshold. Support and Confidence terms are described 

below using its formula. 

Support- Support determines how often a given rule is 

applicable to a given data set. 

       , s (X->Y) = (     )   

Confidence- Confidence determines how frequently items in 

Y appear in transactions that contain X.  

Confidence, c(X->Y) = 
        

    
 

The proposed system Fig I. shows that association rule mining 

process will apply on original data and generated data will 

stored in intermediate data. This association rules mining 

process will also produces original pattern. Incremental 

association rule mining process will apply on incremental data 

and generated data will stored in intermediate data. This 

Incremental association rules mining process will produces 

updated pattern based on available knowledge (obtained from 

mining of previously Intermediate stored data) and original 

pattern. The incremental mining algorithm uses incremental 

mining technique is to re-run the mining algorithm on the only 

updated database. The proposed algorithm Incremental 

Temporal Pattern Miner first transforms the temporal database 

into the endpoint representation for determining patterns. 

It then read the intermediate results from 

InetrmediateDataManager. InetrmediateDataManager saves 

intermediate result to reuse it in incremental mining. Next, it 

will scan the database to calculate the support count of each 

endpoint concurrently. Users are taking threshold as input 

from user. Incremental TPMiner removes infrequent 

endpoints below the given minimum threshold which is 

entered from user.  For each frequent starting endpoint ,build 

the projected database and call minePatterns recursively to 

discover sets of all temporal patterns. Save intermediate result 

to reuse it in incremental mining so that it writes intermediate 

results in InetrmediateDataManager.  

In minePattern, for a prefix it scans its projected database 

once to discover all frequent endpoints and remove infrequent 

ones. It computes support for frequent endpoint .Frequent 

endpoint can be appended to the original prefix to generate a 

new frequent sequence. If all endpoints in a frequent endpoint 

sequence appear in pairs every starting (finishing) endpoint 

has a corresponding finishing (starting) endpoint, now output 

this frequent endpoint sequence. Use calculated support count 

to remine previous count support. Finally, construct the 

projected database with the frequently extended prefixes and 

recursively call minePattern until the prefixes can no longer 

be extended. 

Algorithm: TPMiner 

Input : DB is Temporal Database ,min_threshold is 

minimum support threshold 

Output: TP : Temporal Pattern, Support 

1. Get real time database for incremental temporal 

mining. 

2. Read Intermediate results from 

IntermediateDataManager. 

3. Transform the  DB into endpoint representation. 

4. Find all frequent endpoints in DB. 

5. Call minePatterns (DB). 

6. Call ComputeSupport(DB, patterns) 

7. Calculate frequency of endpoints and remove 

infrequent endpoints in databse those are less than  

8. min_threshold. 

9. FE <- all frequent “starting endpoints”; 

10. for each s Є FE do 

11. Generate candidates DB|@; 

12. Call TPMiner algorithm 

13. Produce TP 

14. Write an Intermediate Result. 

15. end 

Procedure minePatterns (@, DB|@) 

16. for each s Є FE do 
17. append s to @ to form @’  
18. if @’ is a temporal pattern then // if all endpoints 

appear in pair in @’ 
19. TP ← TP ∪ @’ ; 
20. DB|@’ ← DB_construct (DB|@, @’ ); //  
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21. ComputeSupport (DB|@ , patterns ); // calculate 
support count 

22. end 
 

Procedure ComputeSupport (DB|@ , patterns ) 

for each endpoint sequence q Є DB|@ do 

23. mark a “stop_position” at the first (leftmost) 

finishing endpoint which has corresponding starting 

endpoint in @ ; 

24. Count the support of every endpoint from the 

beginning of q to the stop_position of q. 

25. end 

 

Procedure Generate Candidates 

26. temporal_seq ← ; 

27. find all postfix sequences of @’ in DB|@ to form 

DB|@’ ; 

28. for each postfix sequence q Є DB|@’ do 

29. eliminate the “finishing points” in q which has no 

corresponding “starting point” in @’ ; // postfix-

pruning strategy 

30. temporal_seq ← temporal_seq ∪ q; 

31. return temporal_seq 

32. end 

 
Fig 1 Flow of proposed work 

 

The proposed algorithm Incremental Probabilistic Temporal 

Pattern Miner (P-TPMiner) first transforms the temporal 

database into the endpoint representation. It then read the 

intermediate results from InetrmediateDataManager. 

InetrmediateDataManager saves intermediate result to reuse it 

in incremental mining. Next, it will scan the database to 

calculate the support count of each endpoint concurrently. 

Users are taking threshold as input from user. Incremental 

TPMiner removes infrequent endpoints below the given 

minimum threshold which is entered from user. For each 

frequent starting endpoint now build the projected database 

and call minePatterns recursively to discover sets of all 

temporal patterns. In this project save intermediate result to 

reuse it in incremental mining so that it writes intermediate 

results in InetrmediateDataManager.  

In minePattern, for a prefix it scans its projected database 

once to discover all frequent endpoints and remove infrequent 

ones.It compute support for frequent endpoint .Frequent 

endpoint can be appended to the original prefix to generate a 

new frequent sequence. If all endpoints in a frequent endpoint 

sequence appear in pairs every starting (finishing) endpoint 

has a corresponding finishing (starting) endpoint, now output 

this frequent endpoint sequence. Use calculated support count 

to remine previous count support. Finally, construct the 

projected database with the frequently extended prefixes and 

recursively call minePattern until the prefixes can no longer 

be extended. 

The proposed algorithm Incremental Probability Temporal 

Pattern Miner (P-TPMiner) first transforms the temporal 

database into the endpoint representation. It then read the 

intermediate results from InetrmediateDataManager.  Now, 

save intermediate result to reuse it in incremental mining. 

Next, it will scan the database to calculate the support count 

of each endpoint concurrently. Users are taking threshold as 

input from user. Incremental P-TPMiner removes infrequent 

endpoints below the given minimum threshold. For each 

frequent starting endpoint build the projected database and 

call minePatterns recursively to discover sets of all temporal 

patterns. Save intermediate result to reuse it in incremental 

mining so that it writes intermediate results in 

InetrmediateDataManager. In minePattern, for a prefix it 

scans its projected database once to discover all frequent 

endpoints and remove infrequent ones. It compute support for 

frequent endpoint .Frequent endpoint can be appended to the 

original prefix to generate a new frequent sequence. If all 

endpoints in a frequent endpoint sequence appear in pairs 
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every starting (finishing) endpoint has a corresponding 

finishing (starting) endpoint, now output this frequent 

endpoint sequence. Use calculated support count to remine 

previous count support. Finally,  construct the projected 

database with the frequently extended prefixes and recursively 

call minePattern until the prefixes can no longer be extended. 

Algorithm: P-TPMiner 

Input: DB is Temporal Database, min_threshold is 

minimum  support threshold. 

Output: TP :  Temporal pattern,Support. 

1. Get real time database for temporal mining. 

2. Read Intermediate results. 

3. Transform DB into endpoint representation. 

4. Find all frequent endpoints. 

5. Call minePatterns (DB). 

6. Call ComputeProbablities(DB,patterns) 

7. Calculate frequency of endpoints and remove 

infrequent endpoints in databse those are less than 

min_threshold. 

8. FE <- all frequent “starting endpoints”; 

9. for each s Є FE do 

10. Generate Candidates DB|s; 

11. Call  P-TPMiner 

12. Produce TP 

13. Write an Intermediate Result. 

14. end 

 
Procedure minePatterns (@, DB|@) 

15. for each s Є FE do 
16. append s to @ to form @’  
17. if @’ is a temporal pattern then // if all endpoints 

appear in pair in @’ 
18. TP ← TP ∪ @’ ; 
19. DB|@’ ← DB_construct (DB|@, @’ );  
20. ComputeProbablities (DB|@ , patterns ); //calculate 

support count. 
21. end 

 

Procedure ComputeProbablities  (DB|@ , patterns ) 

22. for each endpoint sequence q Є DB|@ do 

23. Mark a “stop_position” at the first (leftmost) 

finishing endpoint which has corresponding starting 

endpoint in @ ; 

24. Count the frequency of every endpoint from the 

beginning of q to the stop_position of q. 

25. Calculate probability of every point representation . 

26. end.. 

Procedure Generate Candidates 

27. temporal_seq ← ; 

28. find all postfix sequences of @’ in DB|@ to form 

DB|@’ ; 

29. for each postfix sequence q Є DB|@’ do 

30. eliminate the “finishing points” in q which has no 

corresponding “starting point” in @’ ; // postfix-

pruning strategy 

31. temporal_seq ← temporal_seq ∪ q; 

32. return temporal_seq 

33. end 

4. EXPERIMENTAL RESULTS 
Time complexity analysis and experimental results show that 

the incremental algorithm is superior to non-incremental 

algorithms when dealing with large data sets. Both algorithms 

are proposed this incremental strategy by saving intermediate 

results (IR).This IntermediateDataManager runs these 

incremental algorithms in restartable mode. For saving 

intermediate results IntermediateDataManager is used to run 

this algorithm in restartable mode. By extracting intermediate 

results we are mining previous results with next successive 

tasks. The Fig II shows that execution time requires for 

incremental mining is less than execution time require for 

non-incremental mining. Incremental temporal mining is 

applied on many real world applications. Testing is performed 

on real time dataset with minimum support threshold. The 

system is developed using Java platform. The below result 

analysis is comparison of Non-incremental temporal mining 

and Incremental temporal mining. 

 

Fig.2 Result Analysis 

5. CONCLUSION 
We are discussed Incremental temporal mining with non-

incremental algorithm. In this system we have proposed the 

incremental algorithms and how these algorithms are run in 

restartable mode. Both incremental Temporal Pattern (TP) and 

Probabilistic-Temporal Pattern (P-TP) are developed 

efficiently and effectively. These both algorithms are reusing 

previous results so that these algorithms don’t require to start 

candidate generation for their previous tasks.   Execution time 

requires for incremental mining is less than execution time 

require for non-incremental mining. The experimental results 

shows that overall performance of these two Temporal Pattern 

and Probabilistic-Temporal Pattern are better than existing TP 

and P-TP algorithms. Chronological order is an issue of 

incremental temporal mining. 
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