
International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.7, September 2017

8

Dynamic Job Ordering and Slot Configuration for

MapReduce Workloads

Sonali S. Birajadar
M B E Society’s College of
Engineering, Ambajogai
Maharashtra, India

B. M. Patil
M B E Society’s College of
Engineering, Ambajogai
Maharashtra, India

V. M. Chandode
M B E Society’s College of
Engineering, Ambajogai
Maharashtra, India

ABSTRACT
In today’s world the amount of data being generated is

growing exponentially and use of internet is also increasing it

leads to handle lots of data by internet service providers.

MapReduce is one of the good solutions for implementing

large scale distributed data application. A MapReduce

workload generally contains a set of jobs, each of job consists

of multiple map and reduce tasks. Map task executed before

reduce task and map tasks can only run in map slot and reduce

tasks can only run in reduce slot. Due to that different job

executions orders and map/reduce slot configurations for a

MapReduce workload have different performance metrics and

different system utilization. Makespan and total completion

time are two key performance metrics. This paper proposes

two algorithm for these two key metrics, The first class of

algorithms mainly focuses on the job ordering optimization

for a MapReduce workload under given slot configuration and

the second class of algorithms perform optimization for slot

configuration for a MapReduce workload.

Keywords
MapReduce, Hadoop, Flow-shops, Scheduling algorithm, Job

ordering.

1. INTRODUCTION
MapReduce is a processing method and a software model for

dispensed computing based on java. Hadoop, an open source

implementation of MapReduce, has been deployed in large

clusters containing thousands of machines by companies such

as Amazon and Facebook. The MapReduce algorithm

contains two critical tasks, namely Map and Reduce, where

the reduce tasks are performed after the map tasks. Map takes

a hard and fast of data and converts it into some other set of

data, where elements are broken down into tuples (key/value

pairs). Secondly, lessen undertaking, which takes the output

from a Map as an input and combines the ones information

tuples right into a smaller set of tuples. As the collection of

the name MapReduce implies, the reduce mission is

continually carried out after the Map job. MapReduce is that it

is straightforward to scale data processing over multiple

computing nodes. Under the MapReduce version, the

information processing primitives are called mappers and

reducers. Decomposing a data processing utility into mappers

and reducers is sometimes nontrivial. Once we write

application within the MapReduce form, scaling the software

to run over loads, lots, or maybe tens of heaps of machines in

a cluster is simply a configuration change. This easy

scalability is what has attracted many programmers to use the

MapReduce model. There are two key performance metrics

i.e. Makespan and total completion time (TCT) and we aim to

optimize these matrics. Generally, make span is defined as the

timeperiod since the start of the first job until the completion

of the last job for a set of jobs. It considers the computation

time of jobs and is often used to measure the performance and

utilization efficiency of a system. In contrast, total completion

time is referred to as the sum of completed time periods for all

jobs since the start of the first job. It is a generalized

makespan with queuing time (i.e., waiting time) included. We

can use it to measure the satisfaction to the system from a

single job’s perspective through dividing the total completion

time by the number of jobs (i.e., average completion time).

Therefore, in this paper, we aim to optimize these two metrics

the number of jobs (i.e., average completion time). Therefore,

in this paper, we aim to optimize these two metrics.

Objectives:-
• To improve the performance for MapReduce workloads

with job ordering and slot configuration optimization
approaches.

• Propose slot configuration algorithms for make span and

total completion time.

• Perform extensive experiments to validate the

effectiveness of proposed algorithms and theoretical

results.

2. LITERATURE REVIEW
Wolf et al. [2] implemented flexible scheduling allocation

scheme with Hadoop fair scheduler. A primary concern is to

optimize scheduling theory metrics, response time, makespan,

stretch, and Service Level Agreement. They proposed penalty

function for measurement of job completion time, epoch

scheduling for partitioning time, moldable scheduling for job

parallelization, and malleable scheduling for different interval

parallelization.

Dean et al. 2008 [1] have discussed MapReduce programming

model. The MapReduce model performs operations using the

map and reduces functions. Map function gets input from user

documents. It generates intermediate key/value for reducing

function. It further processes intermediate key/value pairs and

provide output key/value pairs. At an entry level, MapReduce

programming model provided the best data processing results.

Currently, it needs to process the large volume of data. So it

provides some consequences while processing and generating

data sets. It takes much execution time for task initialization,

task coordination, and task scheduling. Parallel data

processing may lead to inefficient task execution and low

resource utilization.

Verma et al. [3] proposed two algorithms for makespan

optimization. First is a greedy algorithm job ordering method

based on Johnson’s Rule. Another is a heuristic algorithm

called BalancedPool. They have introduced a simple

abstraction where each MapReduce job is represented as a

pair of map and reduce stage duration. The Johnson algorithm

was designed for building an optimal job schedule. This

framework evaluates the performance benefits of the

constructed schedule through an extensive set of simulations

over a variety of realistic workloads. It measures how many

numbers of slots required for scheduling the slots dynamically

with a particular job deadline.

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.7, September 2017

9

Tang et al. [4] have proposed three techniques to improve

MapReduce performance. First technique is Dynamic Hadoop

Slot Allocation. They categorized utilized slot into the busy

slot and idle slot respectively. The primary concern is to

increase the number of the busy slots and decrease number of

idle slots. DHSA observes idle map and reduce slots.

Dynamic Hadoop Slot Allocation allocate the task only to the

unallocated map slots and due to Speculative Execution

Performance Balancing provides performance upgrade for a

batch of jobs. It gives the highest priority to failed tasks and

next level priority to pending tasks. Due to slot prescheduling

it improves the performance of slot utilization.

Tang, Lee and He [5] have proposed DynamicMR: A

Dynamic Slot Allocation Optimization Framework for

improving the performance for a single job but at the expense

of the cluster efficiency. They proposed Hazardous Execution

Performance Balancing technique for balancing the

performance tradeoff between a single job and a batch of jobs.

Slot PreScheduling is the new technique and that can improve

the data locality but with no impact on fairness. Finally,

integrating these two techniques, new technique is

implemented called DynamicMR that can improve the

performance of MapReduce workloads.

Tang, Lee and He [6] have proposed MROrder: Flexible Job

Ordering technique which optimizes the job order for online

MapReduce workloads. MROrder is designed to be flexible

for different optimization metrics, e.g., makespan and total

completion time. Kyparisis and Koulamas [7] considered a

scheduling problem in two-stage hybrid flow shop, where the

first stage consists of two machines formed an open shop and

the other stage has only one machine. The main objective is to

minimize the makespan, i.e., the maximum completion time

of all jobs. They first show the problem is NP-hard in the

strong sense, then we present two heuristics to solve the

problem. Computational experiments show that the combined

algorithm of the two heuristics performs well on randomly

generated problem instances.

Agrawal et al. [8] have proposed a method called Scheduling

shared scans of large data files and it is used to maximize scan

sharing by grouping MapReduce jobs into batches so that

sequential scans of large files are shared among many

simultaneous jobs where it is possible. MRShare [9] is a

sharing framework and it gives three possible work-sharing

opportunities, they are scan sharing, mapped outputs sharing,

and Map function sharing across multiple MapReduce jobs.

Due to sharing it avoides the redundant work and saves the

processing time.

Herodotou et al. [10] provide Hadoop configuration

optimization policy. Starfish is a self-tuning framework and it

can adjust the Hadoop’s configuration automatically for a

MapReduce job. Based on the cost-based model and sampling

technique the utilization of Hadoop cluster can be maximized

and it also proposes a system named Elastisizer for cluster-

sizing optimization and MapReduce job-level parameter

configurations optimization, on the cloud platform, to meet

desired requirements on execution time and cost for a given

workload, based on a careful mix of job profiling, estimation

using black-box and white-box models and simulation.

3. JOB ORDERING OPTIMIZATION
We first focus on makespan optimization. We describe the

MK_JR algorithm that produces the optimized job order.

Next, we describe the MK_TCT_JR algorithm, which

optimizes both makespan and total completion time.

3.1 Makespan Optimization
The optimal job order for the simplified case can be obtained

by using Johnson’s Rule [11], which is an efficient job

ordering algorithm for the minimum makespan. Johnson’s

rule works as follows. Divide the jobs set J into two disjoint

sub-sets �� and ��. Set �� consists of those jobs �� for which ��� < ��� . Set �� contains the remaining jobs (i.e. J \ ��).

Sequence jobs in �� in non-decreasing order of ��� and those

in �� in non-increasing order of ��� . The optimal job order is

obtained by appending the sorted set �� to the end of sorted

set ��. In this sometimes the makespan minimization problem

becomes NP-hard, because the number of tasks is not divisible

by the number of slots. Verma et al. [3] first noted it and

proposed an algorithm based on Johnson’s rule. and re-

formated in the following algorithm MK_JR.

Algorithm 1. Greedy Algorithm Based on Johnson’s

Rule(MK_JR)
Input:

 J: the MapReduce workload

 |
�|: The given number of map slots.

 |
�|: The given number of reduce slots.

Output:
 Φ : The optimized job submission order.

1. For each job �� , we first estimate its map-phase

processing time ��� and reduce-phase processing

time ��� by using the following formula:

����, ��� = �∑ ��,��|���|���|
�| , ∑ ��,��|���|���|
�| . ����

2. We order jobs in J based on the following

principles:

a) Partition jobs set J into two disjoint sub-sets �� and ��: �� = ������� 	�	� ^���� ≤ ���# �� = ������� 	�	� ^���� > ���#
b) Order all jobs in �� from left to right by non-

decreasing ���. Order all jobs in �� from left to

right by nonincreasing ��� .

c) Make an ordered jobs set �′ by joining all jobs in ��

first and then �� in order, i.e., ∅�: �′ = '��� , ��� (

3.2 Bi-Criteria Optimization of Makespan
and Total Completion Time

In this we consider two key performance metrics i.e.

Makespan and total completion time. Generally, makespan is

nothing but maximum completion time for a batch of jobs. It

considers the computation time of jobs and is often used to

measure the performance and utilization efficiency of a

system. Total completion time is the sum of completion time

of all jobs. It is a generalized makespan with queuing time i.e.

waiting time included. So far, we focus only on the

optimization of makespan. Here the total completion time that

can be poor subject to gain optimal makespan. Therefore,

there is a need for bi-criteria optimization for both key

performance matrics. Intuitively, the makespan is affected

primarily by the positions of large-size jobs. In contrast, the

total completion time is mainly influenced by the positions of

small-size jobs. The algorithm shortest processing time first

(SPTF) is used to optimize the total completion time.

However, MK_JR is not aware of varying job sizes. In some

scenarios the job order produced by MK_JR can have adverse

effect on the total completion time. For example, there can be

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.7, September 2017

10

a job �� whose processing time (e.g. ��� + ���) is very small

but ��� > ��� . We should schedule �� early if we want to

minimize the total completion time, whereas MK_JR might

put it in the middle or later part of the order list according to

Johnson’s Rule. Therefore we design a new greedy algorithm

by combining SPTF and Johnson’s Rule called MK_TCT_JR.

In MK_TCT_JR, we first divide job set J into two subsets, ��′

and ��′ . Let ��′ contain small-size jobs and ��′ contain large-size

jobs. We schedule jobs in ��′ first and then ��′ . Within each

set, we use MK_JR to minimize its makespan. We estimate

the processing time for each job by adding its map and reduce

phase running times, given the whole map reduce slots of the

Hadoop cluster. Particularly, our classification of small-/large-

size jobs is based on the geometric mean of processing time of

all jobs, considering that unlike the arithmetic mean that

favors large-size jobs, geometric mean has a good unbiased

property for all jobs.

Algorithm 2. Greedy algorithm based on Shortest

Processing Time First and Johnson’s Rule

(MK_TCT_JR)

Input:

 J: the MapReduce workload

 |
�|: The given number of map slots

 |
�|: The given number of reduce slots

Output:
 ϕ : the optimized job submission order.

1. For each job �� we first compute its processing

time �� by using the formula below:

�� 	= ∑ ��,��|���|���|
�| + ∑ ��,��|���|���|
�|

2. Let � = �∏ ���+�+, -. We divide jobs set J into

two disjointsub-sets ��′ and ��′ : ��′ = '��|��� ∈ � ∩ ��� ≤ � (, ��′ = '��|��� ∈ � ∩ ��� > � (
3. Order all jobs in ��′ and ��′ using MK_JR

respectively.

4. Make a ordered jobs set �′ by joining all jobs in

the ordered set ��′ first and then the ordered set ��′ ,

i.e., ∅1: �′ = 2���′ #, ���′ #3

4. SLOT CONFIGURATION
OPTIMIZATION

In this section, we first propose mapreduce slot configuration

algorithm MK_SF_JR to optimize makespan. Then, the bi-

criteria algorithm MK_TCT_SF_JR is described to optimize

the makespan and total completion time together.

4.1 Makespan Optimization
Given a MapReduce workload and the total number of slots,

and we have to search and compare all combinations of job

submission orders and map/reduce slot configurations as

shown in Algorithm 3. It can optimize the makespan and in

this we can include efficient job ordering optimization

algorithms i.e. MK_JR.

Algorithm 3. Search algorithm for optimized slot

configuration and job submission order. (MK_SF_JR)
Input:

 J: The MapReduce workload

 |
|: The total number of slots.

Output:

 ϕ: the optimized job submission order.

 |
�|: The optimized number of map slots.

 |
�|: The optimized number of reduce slots.

 Mini_Makespan: the minimized makespan.

1: Mini_Makespan ← ∞,ϕ ←null.

2: for �
4�� from 1 to |
| − 1 do

3: 							�
4�� ← |
| − |
4�|
4: 										∅4 ← MK_JR(J, |
4�|,�
4��)
5: Makespan ← MREstimator (J , ∅4,	�
4�� , �
4��).
6: if Mini_Makespan > Makespan then
7: Mini_Makespan← Makespan.

8: �|
8|, |
9| ← ��
4��, �
4��

9: ∅ ← ∅4
10: end if

11: end for

12: return (ϕ,|
�|,|
�| , Mini_Makespan).

4.2 Bi-Criteria Optimization of Makespan
and Total Completion Time

Algorithm 4, it is a bi-criteria optimization algorithm for

makespan and total completion time with regard to slot

configuration optimization. It is a search algorithm that

incorporates the bi-criteria job ordering algorithm

MK_TCT_JR.

Algorithm 4. Search algorithm for optimized slot

configuration and job submission order.

(MK_TCT_SF_JR)
Input:

 J: The MapReduce workload

 |
|: The total number of slots.

Output:

 ϕ: The optimized job submission order.

 |
�|: The optimized number of map slots.

 |
�|: The optimized number of reduce slots.

 Mini_Makespan: the minimized makespan.

 Mini_TCT: the optimized total completion time.

1: Mini_Makespan ← ∞,ϕ ←null

2: for |
4�| from 1 to |
| − 1 do

3: 						|
4�| ← |
| − |
4�|
4: 								∅4 ← MK_TCT_JR(J, |
4�|,|
4�|)
5: (Makespan,TCT)←MREstimator (J, ∅4 ,	|
4�| , |
4�|).
6: if Mini_Makespan > Makespan then

7: Mini_Makespan← Makespan.

8: Mini_TCT ←TCT.

9: �|
8|, |
9| ← ��
4��, �
4��

10: ∅ ← ∅4

11: end if
12: end for
13: return (ϕ , |
�| , |
�| , Mini_Makespan,

Mini_TCT).

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.7, September 2017

11

5. EVALUATION
In this section, we evaluate algorithms using workloads. To

well reflect practical workloads, we generate our workloads

by choosing three benchmarks and using their provided

datasets. The detailed benchmarks are described as follows:

• Word Count -Computes the occurrence frequency of

each word in a document.

• Sort -Sorts the data in the input files in a dictionary

order.

• Inverted Index. - Takes a list of documents as input

and generates word-to-document indexing.

In our experiments, we are taking the three types of jobs like

word count, sorting and creating inverted index after that run

the UnOptimized means run the normal map reduce concept it

shows the Job ID like serial number Job Name like Word

Count, Sorting and Creating Inverted Index, Processing Type

like Un Optimized, Processing Time, Mapper Time and

Reducer Time the total time taken by Mapper and reducer to

process the job is represented as processing time in

miliseconds and their individual timings in nanoseconds after

that apply the MK_JR, MK_TCT_JR, MK_SF_JR and

MK_TCT_SF_JR algorithms based on that we are minimize

the slot utilization for Multiple MapReduce Jobs through Job

Ordering Technique. In the below chart we can observe that

difference between the lengths of UnOptimized, MK_JR,

MK_TCT_JR, MK_SF_JR and MK_TCT_SF_JR Algorithms.

We can observe that MakeSpan Processing Time chart in that

difference between the lengths of UnOptimized, MK_JR,

MK_TCT_JR, MK_SF_JR and MK_TCT_SF_JR Algorithms.

The difference will be shown in the sense of Makespan

Processing Time (as shown in Figure 1) and Total completion

time (as shown in Figure 2). Through our implementation we

can improve the performance of the system at lower cost then

compare to current methods as well as minimize the

Makespan and the total completion time and job ordering

optimization for a MapReduce workload under a given

map/reduce slot configuration through job ordering technique.

Fig 1: Makespan processing time chart

Fig 2: TCT processing time chart

6. CONCLUSION
In this paper we worked on the job ordering and map/reduce

slot configuration problems for MapReduce production

workloads that run periodically in a data warehouse, wherever

the typical execution time of map/reduce tasks for a

MapReduce job can be profiled from the history run. Two

performance metrics are considered, i.e., makespan and total

completion time. We first focus on the makespan. We tend to

propose two types of algorithms i.e. job ordering optimization

algorithm and map/reduce slot configuration optimization

algorithm. We observe that the total completion time can be

poor subject to getting the optimal makespan, therefore, we

further propose a new greedy job ordering algorithm and a

map/reduce slot configuration algorithm to optimize the

makespan and total completion time together. The theoretical

analysis is additionally given for our projected heuristic

algorithms, as well as approximation ratio, higher and lower

bounds on Makespan. Finally, we tend to conduct extensive

experiments to validate the effectiveness of our proposed

algorithms and their theoretical results. In future we can prefer

a dynamic slot allocation strategy that includes active jobs

workload estimation, optimal slot assignment, and scheduling

policy. As for future work, we are interested in extending our

dynamic slot allocation algorithms to environments like

Cluster/cloud has become heterogeneous with different

architecture and extend our previous study to handle the slot

configuration on CPUs and GPUs.

7. REFERENCES
[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data

processing on large clusters,” in Proc. 6th Conf. Symp.

Oper. Syst. Design Implementation, 2004

[2] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar,

S. Parekh, K.-L. Wu, and A. balmin, “Flex: A slot

allocation scheduling optimizer for mapreduce

workloads,” in Proc. ACM/IFIP/USENIX 11th Int. Conf.

Middleware, 2010

[3] A. Verma, L. Cherkasova, and R. H. Campbell, “Two

sides of a coin: Optimizing the schedule of mapreduce

jobs to minimize their makespan and improve cluster

performance,” in Proc. IEEE 20th Int. Symp. Model.,

Anal. Simul. Comput. Telecommun. Syst.,2012

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.7, September 2017

12

[4] S. Tang, B.-S. Lee, and B. He, “Dynamic slot allocation

technique for mapreduce clusters,” in Proc. IEEE Int.

Conf. Cluster Comput.,Sep. 2013, pp. 1–8.

[5] S. Tang, B.-S. Lee, and B. He, “Dynamicmr: A dynamic

slot allocation optimization framework for mapreduce

clusters,” IEEE Trans.Cloud Comput., vol. 2, no. 3, pp.

333–347, Jul. 2014.

[6] S. Tang, B.-S. Lee, and B. He,, “Mrorder: Flexible job

ordering optimization for online mapreduce workloads,”

in Proc. 19th Int. Conf. Parallel Process., 2013, pp. 291–

304.

[7] G. J. Kyparisis and C. Koulamas, “A note on makespan

minimization in two-stage flexible flow shops with

uniform machines,” Eur. J.Oper. Res., vol. 175, no. 2, pp.

1321–1327, 2006.

[8] P. Agrawal, D. Kifer, and C. Olston, “Scheduling shared

scans of large data files,” Proc. VLDB Endow., vol. 1,

no. 1, pp. 958–969,Aug. 2008.

[9] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N.

Koudas, “Mrshare: Sharing across multiple queries in

mapreduce,” Proc.VLDB Endowment, vol. 3, nos. 1/2,

pp. 494–505, Sep. 2010.

[10] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.

B. Cetin, and S. Babu, “Starfish: A self-tuning system for

big data analytics,”in Proc. 5th Conf. Innovative Data

Syst. Res., 2011

[11] S. M. Johnson, “Optimal two- and three-stage production

schedules with setup times included,” Naval Res.

Logistics Quart., vol. 1, no. 1, pp. 61–68, 1954.

IJCATM : www.ijcaonline.org

