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ABSTRACT 
In today’s world the amount of data being generated is 

growing exponentially and use of internet is also increasing it 

leads to handle lots of data by internet service providers. 

MapReduce is one of the good solutions for implementing 

large scale distributed data application. A MapReduce 

workload generally contains a set of jobs, each of job consists 

of multiple map and reduce tasks. Map task executed before 

reduce task and map tasks can only run in map slot and reduce 

tasks can only run in reduce slot. Due to that different job 

executions orders and map/reduce slot configurations for a 

MapReduce workload have different performance metrics and 

different system utilization. Makespan and total completion 

time are two key performance metrics. This paper proposes 

two algorithm for these two key metrics, The first class of 

algorithms mainly focuses on the job ordering optimization 

for a MapReduce workload under given slot configuration and 

the second class of algorithms perform optimization for slot 

configuration for a MapReduce workload. 

Keywords 
MapReduce, Hadoop, Flow-shops, Scheduling algorithm, Job 

ordering. 

1. INTRODUCTION 
MapReduce is a processing method and a software model for 

dispensed computing based on java. Hadoop, an open source 

implementation of MapReduce, has been deployed in large 

clusters containing thousands of machines by companies such 

as Amazon and Facebook. The MapReduce algorithm 

contains two critical tasks, namely Map and Reduce, where 

the reduce tasks are performed after the map tasks. Map takes 

a hard and fast of data and converts it into some other set of 

data, where  elements are broken down into tuples (key/value 

pairs). Secondly, lessen undertaking, which takes the output 

from a Map as an input and combines the ones information 

tuples right into a smaller set of tuples. As the collection of 

the name MapReduce implies, the reduce mission is 

continually carried out after the Map job. MapReduce is that it 

is straightforward to scale data processing over multiple 

computing nodes. Under the MapReduce version, the 

information processing primitives are called mappers and 

reducers. Decomposing a data processing utility into mappers 

and reducers is sometimes nontrivial. Once we write  

application within the MapReduce form, scaling the software 

to run over loads, lots, or maybe tens of heaps of machines in 

a cluster is simply a configuration change. This easy 

scalability is what has attracted many programmers to use the 

MapReduce model. There are two key performance metrics 

i.e. Makespan and total completion time (TCT) and we aim to 

optimize these matrics. Generally, make span is defined as the 

timeperiod since the start of the first job until the completion 

of the last job for a set of jobs. It considers the computation 

time of jobs and is often used to measure the performance and 

utilization efficiency of a system. In contrast, total completion 

time is referred to as the sum of completed time periods for all 

jobs since the start of the first job. It is a generalized 

makespan with queuing time (i.e., waiting time) included. We 

can use it to measure the satisfaction to the system from a 

single job’s perspective through dividing the total completion 

time by the number of jobs (i.e., average completion time). 

Therefore, in this paper, we aim to optimize these two metrics 

the number of jobs (i.e., average completion time). Therefore, 

in this paper, we aim to optimize these two metrics. 

Objectives:-  
• To improve the performance for MapReduce workloads 

with job ordering and slot configuration optimization 
approaches.  

• Propose slot configuration algorithms for make span and 

total completion time.  

• Perform extensive experiments to validate the 

effectiveness of proposed algorithms and theoretical 

results.  

2. LITERATURE REVIEW 
Wolf et al. [2] implemented flexible scheduling allocation 

scheme with Hadoop fair scheduler. A primary concern is to 

optimize scheduling theory metrics, response time, makespan, 

stretch, and Service Level Agreement. They proposed penalty 

function for measurement of job completion time, epoch 

scheduling for partitioning time, moldable scheduling for job 

parallelization, and malleable scheduling for different interval 

parallelization. 

Dean et al. 2008 [1] have discussed MapReduce programming 

model. The MapReduce model performs operations using the 

map and reduces functions. Map function gets input from user 

documents. It generates intermediate key/value for reducing 

function. It further processes intermediate key/value pairs and 

provide output key/value pairs. At an entry level, MapReduce 

programming model provided the best data processing results. 

Currently, it needs to process the large volume of data. So it 

provides some consequences while processing and generating 

data sets. It takes much execution time for task initialization, 

task coordination, and task scheduling. Parallel data 

processing may lead to inefficient task execution and low 

resource utilization. 

Verma et al. [3] proposed two algorithms for makespan 

optimization. First is a greedy algorithm job ordering method 

based on Johnson’s Rule. Another is a heuristic algorithm 

called BalancedPool. They have introduced a simple 

abstraction where each MapReduce job is represented as a 

pair of map and reduce stage duration. The Johnson algorithm 

was designed for building an optimal job schedule. This 

framework evaluates the performance benefits of the 

constructed schedule through an extensive set of simulations 

over a variety of realistic workloads. It measures how many 

numbers of slots required for scheduling the slots dynamically 

with a particular job deadline. 
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Tang et al. [4] have proposed three techniques to improve 

MapReduce performance. First technique is Dynamic Hadoop 

Slot Allocation. They categorized utilized slot into the busy 

slot and idle slot respectively. The primary concern is to 

increase the number of the busy slots and decrease number of 

idle slots. DHSA observes idle map and reduce slots. 

Dynamic Hadoop Slot Allocation allocate the task only to the 

unallocated map slots and due to Speculative Execution 

Performance Balancing provides performance upgrade for a 

batch of jobs. It gives the highest priority to failed tasks and 

next level priority to pending tasks. Due to slot prescheduling 

it improves the performance of slot utilization. 

Tang, Lee and He [5] have proposed DynamicMR: A 

Dynamic Slot Allocation Optimization Framework for 

improving the performance for a single job but at the expense 

of the cluster efficiency. They proposed Hazardous Execution 

Performance Balancing technique for balancing the 

performance tradeoff between a single job and a batch of jobs. 

Slot PreScheduling is the new technique and that can improve 

the data locality but with no impact on fairness. Finally, 

integrating these two techniques, new technique is 

implemented called DynamicMR that can improve the 

performance of MapReduce workloads. 

Tang, Lee and He [6] have proposed MROrder: Flexible Job 

Ordering technique which optimizes the job order for online 

MapReduce workloads. MROrder is designed to be flexible 

for different optimization metrics, e.g., makespan and total 

completion time. Kyparisis and Koulamas [7] considered a 

scheduling problem in two-stage hybrid flow shop, where the 

first stage consists of two machines formed an open shop and 

the other stage has only one machine. The main objective is to 

minimize the makespan, i.e., the maximum completion time 

of all jobs. They first show the problem is NP-hard in the 

strong sense, then we present two heuristics to solve the 

problem. Computational experiments show that the combined 

algorithm of the two heuristics performs well on randomly 

generated problem instances. 

Agrawal et al. [8] have proposed a method called Scheduling 

shared scans of large data files and it is used to maximize scan 

sharing by grouping MapReduce jobs into batches so that 

sequential scans of large files are shared among many 

simultaneous jobs where it is possible. MRShare [9] is a 

sharing framework and it gives three possible work-sharing 

opportunities, they are scan sharing, mapped outputs sharing, 

and Map function sharing across multiple MapReduce jobs. 

Due to sharing it avoides the redundant work and saves the 

processing time. 

Herodotou et al. [10] provide Hadoop configuration 

optimization policy. Starfish is a self-tuning framework and it 

can adjust the Hadoop’s configuration automatically for a 

MapReduce job. Based on the cost-based model and sampling 

technique the utilization of Hadoop cluster can be maximized  

and it also proposes a system named Elastisizer for cluster-

sizing optimization and MapReduce job-level parameter 

configurations  optimization, on the cloud platform, to meet 

desired requirements on execution time and cost for a given 

workload, based on a careful mix of job profiling, estimation 

using black-box and white-box models and simulation. 

3. JOB ORDERING OPTIMIZATION 
We first focus on makespan optimization. We describe the 

MK_JR algorithm that produces the optimized job order. 

Next, we describe the MK_TCT_JR algorithm, which 

optimizes both makespan and total completion time.  

3.1 Makespan Optimization 
The optimal job order for the simplified case can be obtained 

by using Johnson’s Rule [11], which is an efficient job 

ordering algorithm for the minimum makespan. Johnson’s 

rule works as follows. Divide the jobs set J into two disjoint 

sub-sets �� and   ��. Set �� consists of those jobs �� for which ��� < ���  . Set ��  contains the remaining jobs (i.e. J \ �� ). 

Sequence jobs in  �� in non-decreasing order of  ��� and those 

in  �� in non-increasing order of  ��� . The optimal job order is 

obtained by appending the sorted set �� to the end of sorted 

set ��. In this sometimes the makespan minimization problem 

becomes NP-hard, because the number of tasks is not divisible 

by the number of slots. Verma et al. [3] first noted it and 

proposed an algorithm based on Johnson’s rule. and re-

formated in the following algorithm MK_JR.  

Algorithm 1. Greedy Algorithm Based on Johnson’s  

Rule(MK_JR) 
Input: 

 J: the MapReduce workload 

 |
�|: The given number of map slots. 

 |
�|: The given number of reduce slots. 

Output: 
          Φ  : The optimized job submission order. 

1. For each job �� , we first estimate its map-phase 

processing time ��� and reduce-phase processing 

time ��� by using the following formula: 

����, ��� = �∑ ��,��|���|���|
�| , ∑ ��,��|���|���|
�| . ���� 

2. We order jobs in J based on the following 

principles: 

a) Partition jobs set J into two disjoint sub-sets �� and ��: �� = ������� 	�	� ^���� ≤ ���# �� = ������� 	�	� ^���� > ���# 
b) Order all jobs in ��  from left to right by non-

decreasing   ���. Order all jobs in �� from left to 

right by nonincreasing  ��� . 

c) Make an ordered jobs set �′ by joining all jobs in �� 

first and then �� in order, i.e.,  ∅�: �′ = '��� , ��� ( 
 

3.2 Bi-Criteria Optimization of Makespan 
and Total Completion Time 

In this we consider two key performance metrics i.e. 

Makespan and total completion time. Generally, makespan is 

nothing but maximum completion time for a batch of jobs. It 

considers the computation time of jobs and is often used to 

measure the performance and utilization efficiency of a 

system. Total completion time is the sum of completion time 

of all jobs. It is a generalized makespan with queuing time i.e. 

waiting time included. So far, we focus only on the 

optimization of makespan. Here the total completion time that 

can be poor subject to gain optimal makespan. Therefore, 

there is a need for bi-criteria optimization for both key 

performance matrics. Intuitively, the makespan is affected 

primarily by the positions of large-size jobs. In contrast, the 

total completion time is mainly influenced by the positions of 

small-size jobs. The algorithm shortest processing time first 

(SPTF) is used to optimize the total completion time. 

However, MK_JR is not aware of varying job sizes. In some 

scenarios the job order produced by MK_JR can have adverse 

effect on the total completion time. For example, there can be 



International Journal of Computer Applications (0975 – 8887) 

Volume 173 – No.7, September 2017 

10 

a job �� whose processing time (e.g.  ��� + ��� ) is very small 

but ��� > ���  . We should schedule ��  early if we want to 

minimize the total completion time, whereas MK_JR might 

put it in the middle or later part of the order list according to 

Johnson’s Rule. Therefore we design a new greedy algorithm 

by combining SPTF and Johnson’s Rule called MK_TCT_JR. 

In MK_TCT_JR, we first divide job set J into two subsets, ��′  

and ��′ . Let ��′  contain small-size jobs and ��′  contain large-size 

jobs. We schedule jobs in ��′   first and then   ��′ . Within each 

set, we use MK_JR to minimize its makespan. We estimate 

the processing time for each job by adding its map and reduce 

phase running times, given the whole map reduce slots of the 

Hadoop cluster. Particularly, our classification of small-/large-

size jobs is based on the geometric mean of processing time of 

all jobs, considering that unlike the arithmetic mean that 

favors large-size jobs, geometric mean has a good unbiased 

property for all jobs.  

 

Algorithm 2. Greedy algorithm based on Shortest 

Processing Time First and Johnson’s Rule 

(MK_TCT_JR) 

Input: 

 J: the MapReduce workload 

 |
�|: The given number of map slots 

 |
�|: The given number of reduce slots 

Output: 
              ϕ  : the optimized job submission order. 

1. For each job ��  we first compute its processing 

time �� by using the formula below: 

�� 	= ∑ ��,��|���|���|
�| + ∑ ��,��|���|���|
�|  

2. Let � = �∏ ���+�+,  -. We divide jobs set J into 

two disjointsub-sets ��′  and  ��′ : ��′ = '��|��� ∈ � ∩ ��� ≤ � (, ��′ = '��|��� ∈ � ∩ ��� > � ( 
3. Order all jobs in ��′  and ��′  using MK_JR 

respectively. 

4. Make a ordered jobs set �′ by joining all jobs in 

the ordered set ��′  first and then the ordered set ��′  , 

i.e.,  ∅1: �′ = 2���′ #, ���′ #3 
 

4. SLOT CONFIGURATION 
OPTIMIZATION 

In this section, we first propose  mapreduce slot configuration 

algorithm MK_SF_JR to optimize makespan. Then, the bi-

criteria algorithm MK_TCT_SF_JR is described to optimize 

the makespan and total completion time together. 

4.1 Makespan Optimization  
Given a MapReduce workload and the total number of slots, 

and we have to search and compare all combinations of job 

submission orders and map/reduce slot configurations as 

shown in Algorithm 3. It can optimize the makespan and in 

this we can include efficient job ordering optimization 

algorithms i.e.  MK_JR. 

 

Algorithm 3. Search algorithm for optimized slot 

configuration and job submission order. (MK_SF_JR) 
Input: 

 J: The MapReduce workload 

 |
|: The total number of slots. 

Output: 

 ϕ: the optimized job submission order. 

 |
�|: The optimized number of map slots. 

 |
�|: The optimized number of reduce slots. 

 Mini_Makespan: the minimized makespan. 

1: Mini_Makespan ← ∞,ϕ ←null. 

2: for  �
4�� from 1 to |
| − 1 do 

3: 							�
4�� ← |
| − |
4�| 
4: 										∅4 ← MK_JR(J, |
4�|,�
4��) 
5:         Makespan ← MREstimator (J  , ∅4,	�
4�� , �
4��). 
6:          if Mini_Makespan > Makespan then 
7:           Mini_Makespan← Makespan. 

8:          �|
8|, |
9| ← ��
4��, �
4�� 

9:           ∅ ← ∅4 
10:        end if 

11: end for 

12: return (ϕ,|
�|,|
�| , Mini_Makespan). 
 

4.2 Bi-Criteria Optimization of Makespan 
and Total Completion Time 

Algorithm 4, it is a bi-criteria optimization algorithm for 

makespan and total completion time with regard to slot 

configuration optimization. It is a search algorithm that 

incorporates the bi-criteria job ordering algorithm 

MK_TCT_JR. 

 

Algorithm 4. Search algorithm for optimized slot 

configuration and job submission order. 

(MK_TCT_SF_JR) 
Input: 

 J: The MapReduce workload 

 |
|: The total number of slots. 

Output: 

 ϕ: The optimized job submission order. 

 |
�|: The optimized number of map slots. 

 |
�|: The optimized number of reduce slots. 

 Mini_Makespan: the minimized makespan. 

 Mini_TCT: the optimized total completion time. 

1: Mini_Makespan ← ∞,ϕ ←null 

2: for  |
4�| from 1 to |
| − 1 do 

3: 						|
4�| ← |
| − |
4�| 
4: 								∅4 ← MK_TCT_JR(J, |
4�|,|
4�|) 
5:    (Makespan,TCT)←MREstimator (J,  ∅4 ,	|
4�| , |
4�|). 
6:          if Mini_Makespan > Makespan then 

7:           Mini_Makespan← Makespan. 

8:           Mini_TCT ←TCT. 

9:           �|
8|, |
9| ← ��
4��, �
4�� 

10:            ∅ ← ∅4 

11:          end if 
12: end for 
13: return (ϕ , |
�| , |
�| , Mini_Makespan, 

Mini_TCT). 
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5. EVALUATION 
In this section, we evaluate algorithms using workloads. To 

well reflect practical workloads, we generate our workloads 

by choosing three benchmarks and using their provided 

datasets. The detailed benchmarks are described as follows: 

• Word Count -Computes the occurrence frequency of 

each word in a document. 

• Sort -Sorts the data in the input files in a dictionary 

order. 

• Inverted Index. - Takes a list of documents as input 

and generates word-to-document indexing. 

In our experiments, we are taking the three types of jobs like 

word count, sorting and creating inverted index after that run 

the UnOptimized means run the normal map reduce concept it 

shows the Job ID like serial number Job Name like Word 

Count, Sorting and Creating Inverted Index, Processing Type 

like Un Optimized, Processing Time, Mapper Time and 

Reducer Time the total time taken by Mapper and reducer to 

process the job is represented as processing time in 

miliseconds and their individual timings in nanoseconds after 

that apply the MK_JR, MK_TCT_JR, MK_SF_JR and 

MK_TCT_SF_JR algorithms based on that we are minimize 

the slot utilization for Multiple MapReduce Jobs through Job 

Ordering Technique. In the below chart we can observe that 

difference between the lengths of UnOptimized, MK_JR, 

MK_TCT_JR, MK_SF_JR and MK_TCT_SF_JR Algorithms. 

We can observe that MakeSpan Processing Time chart in that 

difference between the lengths of UnOptimized, MK_JR, 

MK_TCT_JR, MK_SF_JR and MK_TCT_SF_JR Algorithms. 

The difference will be shown in the sense of Makespan 

Processing Time (as shown in Figure 1) and Total completion 

time (as shown in Figure 2). Through our implementation we 

can improve the performance of the system at lower cost then 

compare to current methods as well as minimize the 

Makespan and the total completion time and job ordering 

optimization for a MapReduce workload under a given 

map/reduce slot configuration through job ordering technique. 

 

Fig 1: Makespan processing time chart 

 

 

Fig 2: TCT processing time chart 

6. CONCLUSION 
In this paper we worked on the job ordering and map/reduce 

slot configuration problems for MapReduce production 

workloads that run periodically in a data warehouse, wherever 

the typical execution time of map/reduce tasks for a 

MapReduce job can be profiled from the history run.  Two 

performance metrics are considered, i.e., makespan and total 

completion time. We first focus on the makespan. We tend to 

propose two types of algorithms i.e. job ordering optimization 

algorithm and map/reduce slot configuration optimization 

algorithm. We observe that the total completion time can be 

poor subject to getting the optimal makespan, therefore, we 

further propose a new greedy job ordering algorithm and a 

map/reduce slot configuration algorithm to optimize the 

makespan and total completion time together. The theoretical 

analysis is additionally given for our projected heuristic 

algorithms, as well as approximation ratio, higher and lower 

bounds on Makespan.  Finally, we tend to conduct extensive 

experiments to validate the effectiveness of our proposed 

algorithms and their theoretical results. In future we can prefer 

a dynamic slot allocation strategy that includes active jobs 

workload estimation, optimal slot assignment, and scheduling 

policy. As for future work, we are interested in extending our 

dynamic slot allocation algorithms to environments like 

Cluster/cloud has become heterogeneous with different 

architecture and extend our previous study to handle the slot 

configuration on CPUs and GPUs. 
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