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ABSTRACT
The electromyogram (EMG) signals recorded from the surface of
skeletal muscles are stochastic in nature and exhibit repeatable pat-
terns for similar muscle activations. Therefore, machine learning
algorithms can be used to learn their patterns and identify the move-
ment intent even in the absence of an actual limb. The EMG signals
are recorded from the residual muscles/muscle sites after amputa-
tion (acquired or congenital) and a representative set of features is
extracted. The feature data are passed on to a machine learning al-
gorithm for training and later use in real-time for controlling a pros-
thetic device. Numerous features of the EMG signal based on its
amplitude, spectral contents, and stochastic nature have been pro-
posed. Similarly, various dimensionality reduction techniques, as
well as, classification algorithms have also been used. In this study,
we provide in-depth analyses of different features of the EMG sig-
nals and classification algorithms along with the effect of dimen-
sionality reduction on the classification accuracy. The surface EMG
data recorded from the forearm muscles of twelve able-bodied vol-
unteers was used to extract six different feature sets (fourteen indi-
vidual features). The feature data with/without dimensionality re-
duction was used to train and test three different classification algo-
rithms, i.e., the linear discriminant analysis (LDA), support vector
machines (SVM), and artificial neural networks (ANN). Our exten-
sive study showed that the feature set consisting of the EMG am-
plitude, spectral, and stochasticity information provided the high-
est classification accuracy with a linear classifier, i.e., the LDA.

General Terms
EMG-Controlled Prosthetic Devices, Pattern Classification

Keywords
Electromyogram, Prosthesis, Linear Discriminant Analysis, Sup-
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1. INTRODUCTION
The electromyogram (EMG) signals are recorded from the surface
of skeletal muscles and represent muscle excitation and activation
quantitatively [22], [15]. These signals contain important informa-
tion about the neural processes taking place in the Central Ner-
vous System (CNS) related to the planning and execution of volun-
tary movements [8], [15]. The EMG signals have been used by re-

searcher and clinicians for decades to investigate muscles in healthy
as well as pathological conditions [23], [26], [1]. Recently, owing
to the advancements in machine learning and pattern classification
techniques, the EMG signals are being used extensively to control
prosthetic devices [6], [4], [27], [24], [2]. These prosthetic devices
are externally powered and are actuated using the intended move-
ment information produced by these machine learning algorithms
[6], [25]. Generally, the surface EMG signals are recorded from
leftover muscles of amputees and after the necessary preprocessing
representative features are extracted [7], [6]. Using feature data, a
supervised or unsupervised machine learning algorithm is trained
[16], [7]. Later, the EMG signals from the same set of muscles are
fed to the trained machine learning algorithm, which provides in-
formation about the movement the user intended to perform [25].
The machine learning approaches exploit the distinguishable and
repeatable patterns in muscle activations. A generalized schematic
layout for extraction of movement intent using machine learning
is provided in Fig. 1. In line with other machine learning applica-
tions, the process of movement identification consists of two dis-
tinct stages, i.e., algorithm training using a set of training data, and
movement identification using EMG data from same muscles in
real-time. Later, the movement intent or movement class informa-
tion is passed on to the actuation mechanism of the prosthetic de-
vice to actually perform the movement. After recording the EMG
signals from physiologically relevant muscles/muscle sites, the sig-
nals may be preprocessed with different filters to improve their
quality and reduce noise [15]. The EMG data is first segmented
into analysis windows of convenient size and representative fea-
tures are extracted from each analysis window [28]. The choice of
the analysis window size depends upon the type of the classifier
and the number and type of features used [33]. A reasonable choice
for analysis window size is 150 ms to 250 ms [33]. On the other
hand, the raw EMG data are rarely used directly as an input to the
classification algorithm due to its stochastic nature and high dimen-
sionality [27].
One of the major challenges in EMG-controlled prosthetic devices
is the selection of the most informative and representative feature
set. A variety of features has been identified based on the am-
plitude, spectral contents as well as the stochastic nature of the
EMG signals [16]. The time domain (TD) features that are re-
lated to the amplitude of the EMG signals may include mean ab-
solute value (MAV) of the EMG signal, integrated mean absolute
value (IMAV), mean absolute value slope (MAVS), Willison ampli-
tude (WA), variance (VAR), zero crossings (ZC), slope sign change
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Fig. 1. The schematic layout of a general machine learning algorithm used for the extraction of movement intent from the EMG signals. The gray boxes
represent processes considered mandatory, while dotted white boxes represent optional processes. The surface EMG signals from relevant muscles/muscle sites
are recorded in the raw form. After preprocessing and segmentation of the EMG data, an informative set of features is extracted from analysis windows. The
feature data is then provided to the classification algorithm as an input, referred to as the training of the algorithm. In case, the feature set is reasonably large,
the dimensionality of the feature set may also be reduced using techniques such as the principal component analysis (PCA), or the independent component
analysis (ICA). Once trained, the classification algorithm can be used to identify movement intent given the EMG signals from the same set of muscles/muscle
sites. Sometimes, the post-processing is also performed to improve classification accuracy [31].

(SSC), waveform length (WL), and mean square value (MSV) [36],
[27]. The spectral or frequency domain (FD) features may include
the mean frequency of the EMG spectrum (MNF), median fre-
quency (MDF), frequency ratio and short-time Fourier transform
(STFT) [36]. On the other hand, EMG signals are also modeled
as a stochastic process using the autoregressive (AR) processes
[28] or Generalized Autoregressive Conditional Heteroscedastic
(AR-GARCH) processes [27]. Using the EMG data, the AR/AR-
GARCH model coefficients are estimated and used as a feature set
[28], [25]. Mathematical definitions of these features are provided
in Table 1.
The quantity of the EMG data is generally increased for better train-
ing and to improve the classification accuracy of machine learning
algorithms [24]. However, as the number of EMG channels, i.e. the
selected muscle sites, and the number of features are increased, the
dimensionality of the EMG feature data may increase significantly.
Numerous algorithms have been proposed in the EMG literature
to reduce data dimensionality, including the principal component
analysis (PCA) and independent component analysis (ICA) [16],
[10], [18].
The selection of an appropriate and efficient classification algo-
rithm is another big challenge in this research [29]. A number of
classification algorithms have been proposed, including the lin-
ear/quadratic discriminant analysis (LDA/QDA) [30], [35], the sup-
port vector machines (SVM) [21], [14], [19], Gaussian mixture
model (GMM) [11], [3], K-nearest neighbor (K-NN) with lazy
learning [5], and various flavors of the artificial neural networks
(ANN) [9], [32] [34], [13].
The classification accuracy of a machine learning scheme for the
EMG-controlled prosthetic device may depend upon many factors,
including the selected feature set, the classification algorithm, di-
mensionality reduction technique (if used), the number and nature
of movements being classified, the EMG hardware, as well as the
user training [17], [25], [12]. In this study, we address a subset of
these confounding factors, i.e., we explore various feature sets, a
dimensionality reduction scheme (the principal component analy-
sis, PCA), and three classification algorithms, i.e., the LDA, SVM
and ANN to find the best combination for the given EMG data from
twelve able-bodied subjects performing a finite number of hand and
wrist movements.

2. METHODS
2.1 Experimental Methods
The study received approval from the institutional review board
(IRB) of the University of Arkansas at Little Rock, USA. All par-
ticipants provided an informed consent before the start of the ex-
periment. A total of twelve able-bodied male and female volunteers
were selected for the study. All participants were healthy, right hand
dominant with no neuromuscular disorder history. Our movement
set consisted of two hand movements, i.e., hand open (HO) and
hand close (HC), and four wrist movements, i.e., forearm prona-
tion (PR), forearm supination (SP), wrist flexion (WF) and wrist
extension (WE). We also included ‘rest’ (RT) in our classification
scheme.
Before the start of the EMG data collection, each participant was
sitting comfortably in a chair with the armrest adjusted as per com-
fort. A graphical user interface (GUI) was used to provide visual
and auditory cues to participants for guiding through the data col-
lection process. A single trial consisted of four repetitions of each
movement and each repetition was five seconds long. There was
a short break of five seconds between consecutive movements. A
total of ten trials were recorded for each participant. Participants
were instructed to maintain comfortable and repeatable force levels
for all movements.
We used a total of eight EMG disposable, self-adhesive silver/silver
chloride (Ag/AgCl) snap electrodes. The electrodes had two circu-
lar conductive areas of 1 cm each and inter-electrode distance of
2 cm. All electrodes were placed around the circumference of the
forearm symmetrically. The electrodes were placed at the proximal
end of the forehand at a location of 1/3 of the distance between
medial epicondyle of the humerus and styloid process of the ulna.
The electrodes used were. We used Noraxon TeleMyo Direct Trans-
mission System (DTS) (Noraxon USA, Inc.) with wireless sensors
to record the EMG signals. The amplifier had inbuilt bandpass fil-
ter of 10-500 Hz as well as a single differential (SD) spatial fil-
ter. EMG data from forearm muscles were recorded using wireless
probes with an inbuilt preamplifier. The DTS Analog Module fur-
ther transmitted analog output to an NI-USB 6009 (National In-
strument Corporation, Austin, TX, USA) data acquisition card to
acquire and digitize the EMG data at the rate of 2000 samples per
second [24]. The BioPatRec software was modified to acquire and
process the EMG data [20], [24]. The schematic layout of the ex-
perimental setup is given in Fig. 2A. During the experiment, the
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Fig. 2. A: Experimental data collection and acquisition of the EMG data from the forearm muscles using TeleMyo DTS, DTS analog module, and a data
acquisition module (NI-USB 6009) [24]. The data were recorded using the BioPatRec software at the sampling rate of 2000 Hz [20]. The resulting single
differential (SD) EMG data were stored in the computer for later processing. B: A schematic layout of the adopted scheme for testing various feature sets, the
dimensionality reduction algorithm, and classifiers. The EMG data from eight channels were segmented and various time domain (TD), 4th order autoregressive
(AR) coefficients, two frequency domain (FD) features, i.e., the mean frequency (MNF), and median frequency (MDF) were calculated. The feature datasets
were passed on to three different classification algorithms, including the linear discriminant (LDA), support vector machine (SVM), and the artificial neural
network (ANN) with and without dimensionality reduction using the principal component analysis (PCA).

EMG data were stored in computer disk and were later processed
in Matlab (Natick, MA, USA).
We developed a comprehensive scheme to test various sets of EMG
features (including TD, AR, and FD), classification algorithms (in-
cluding the LDA, SVM, and ANN), and the effect of dimension-
ality reduction on the classification accuracy (using the PCA algo-
rithm). A schematic layout of the adopted scheme is presented in
Fig. 2B.

2.2 EMG Feature Sets
After segmentation of the EMG data from all eight channels using
analysis windows of size 250 ms, we extracted the TD, AR co-
efficients, and FD features. In total, we extracted fourteen features,
i.e., 8 from TD analysis, 4 from AR, and 2 from FD. These fourteen
features were combined to form six different feature sets. Mathe-
matical definitions of all features used in this study are provided in
Table 1.

2.3 Dimensionality Reduction using Principal
Component Analysis (PCA)

We used the PCA algorithm to reduce the dimensionality of the
EMG feature data. We calculated classification accuracies for the
EMG feature data without dimensionality reduction and then suc-
cessively increased the number of principal components from 5 to

25, i.e., 5, 10, · · · , 25. The principal components were estimated
using Matlab function pca.

(1) TD5: Our first feature set referred to as the TD5 consisted of
five TD features, i.e., RMS, MAV, the number of ZC, WL, and
the number of SSC of the EMG signal during the whole length
of the analysis window.

(2) TD8: The TD8 feature set consisted of all features of TD5
and three additional features, i.e., VAR, WA, and MAVS of
the EMG signal in an analysis window.

(3) TD5-AR4: This feature set consisted of TD5 and coefficients
of the 4th order AR (AR4).

(4) TD5-AR4-FD: This feature set consisted of TD5, AR4, MNF
and MDF of the EMG spectrum.

(5) TD8-AR4: This feature set consisted of TD8 and AR4.
(6) TD8-AR4-FD: This feature set consisted of TD8, AR4, MNF,

and MDF of the EMG spectrum.

2.4 Machine Learning Algorithms
We used three different machine learning algorithms in our test-
ing scheme, i.e., the linear discriminant analysis (LDA), support
vector machines (SVM), and the artificial neural networks (ANN).
All three algorithms were tested using the same feature sets and
the EMG training data. The classification algorithms were imple-
mented using Matlab’s inbuilt functions. The LDA was imple-
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Table 1. Definitions of various features of the EMG signal [16], [25]. Time domain (TD), Autoregressive (AR), and frequency domain
(FD). xi(k) is the kth signal sample of the ith segment, N is the number of samples in the segment i, xth is a predefined threshold.

Type Name Mathematical definition

TD-1 Root mean square (RMS)

√
1
N

N∑
k=1

[xi(k)]2

TD-2 Mean absolute value (MAV) 1
N

N∑
k=1
|xi(k)|

TD-3 Zero Crossing (ZC)
N∑

k=1
f(k) with f(k) = 1 if xi(k) ∗ xi(k + 1) < 0 and

|xi(k)− xi(k + 1)| > xth

TD-4 Waveform Length (WL)
N∑

k=1
(|xi(k)− xi(k + 1|)

TD-5 Slope Sign Change (SSC)
N−1∑
k=1

f [{xi(k)− xi(k + 1)}{xi(k) + xi(k + 1)}]

f(x) =

{
1 if x > xth

0 otherwise

TD-6 Variance (Var) 1
N

N∑
k=1

(xi − x̄i)
2, where x̄i = 1

N

N∑
i=1

xi

TD-7 Willison Amplitude (WA)
N∑

k=1
f(|xi(k)− xi(k + 1)|) with f(x) =

{
1 if x > xth

0 otherwise
TD-8 Mean Absolute Value Slope (MAVS) MAVi+1 −MAVi

AR1-4 Autoregressive 4th order (AR4) xi(k) =
4∑

j=1
ajxi(k − j)

FD-1 Mean Frequency EMG Spectrum (MNF)
∑M

j=1 fjPj∑M
j=1 Pj

FD-2 Median Frequency EMG Spectrum (MDF)
∑M

j=MDF Pj = 1
2

∑M
j=1 Pj

mented using Matlab command fitcdiscr with the ‘DiscrimType’
set to ‘linear’. We used a 10-fold cross-validation scheme for the
LDA testing and reported the same classification accuracies in the
Results section. For the SVM, we used Matlab’s fitcecoc function
with a 10-fold cross-validation and a one-vs-one scheme. For the
ANN classification, we used two hidden layers and divided the data
randomly into three bins, i.e., 70% of the data for training, 15% for
validation, and 15% for testing. The network was trained using the
Levenberg-Marquardt backpropagation algorithm. The classifica-
tion accuracy data represent average values over all cross-validation
runs.

3. RESULTS
3.1 Dimensionality Reduction Using the Principal

Component Analysis (PCA)
We start by presenting our results for the dimensionality reduction
using the PCA algorithm. In Fig. 3, we present percentage variabil-
ity explained by an increasing number of principal components of
the PCA. It is evident that ten principal components explained more
than 98% variability in the EMG feature data.
The classification accuracies from all three algorithms, i.e., LDA,
SVM, and ANN using two different TD feature sets, i.e., TD5 and
TD8 for a range of principal components are presented in Fig. 4A
and B respectively. The classification accuracies presented in these
figures are average values calculated across all twelve tested par-
ticipants. We observed that the classification accuracies for all al-
gorithms were a function of the number of principal components
of the PCA and increased significantly with the increasing number
of principal components. However, we observed the highest classi-
fication accuracies for the case when no dimensionality reduction
was performed. It is also evident that the classification accuracy of
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Fig. 3. The variability explained (in %) by an increasing number of prin-
cipal components of the EMG feature data. It is evident that first 10 com-
ponents explained more than 98% variability in the feature data.

the LDA was significantly higher than the SVM and ANN for both
feature sets.
In Fig. 4C, we present classification accuracies for the LDA us-
ing four different feature sets, i.e., TD5-AR4, TD5-AR4-FD, TD8-
AR4, TD8-AR4-FD with and without dimensionality reduction us-
ing the PCA. It is evident that the PCA did not improve classifi-
cation accuracy, rather a decrease in the classification accuracy is
noted for all cases. An increase in the number of principal com-
ponents increased the classification accuracy for all tested feature
sets.

3.2 Classification Algorithms
The classification accuracy data from all three algorithms, i.e., the
LDA, SVM, and ANN using TD5 feature set is presented in Fig. 5
for all twelve participants. The average values calculated across all
tested participants are also shown. We observed good classification

4



International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.3, September 2017

81

74
76

79
82 82

85
80 82 83 84 84

82 80 81 81 81 82

Without

PCA

PCA-5 PCA-10 PCA-15 PCA-20 PCA-25

ANN LDA SVM

81
77 78 79 80 80

85 82 84 84 85 85

81 83 82 81 81 81

Without

PCA

PCA-5 PCA-10 PCA-15 PCA-20 PCA-25

ANN LDA SVM

C
la

ss
if

ic
at

io
n

 

ac
cu

ra
cy

 (
%

)

Feature Set TD5 Feature Set TD8 A B

86

80
82 83 84 8586

76

84 85 85 8585

80
82 83 84 8486

78

85 86 86 86

Without PCA PCA-5 PCA-10 PCA-15 PCA-20 PCA-25

TD5-AR4 TD5-AR4-FD TD8-AR4 TD8-AR4-FD

C

C
la

ss
if

ic
at

io
n

 

ac
cu

ra
cy

 (
%

) 
-

L
D

A

Principal Components

Fig. 4. The effect of dimensionality reduction on the classification accuracy using different feature sets and classification algorithms. A:The classification
accuracy of three different classification algorithms, i.e., linear discriminant analysis (LDA), support vector machines (SVM), and artificial neural networks
(ANN) is presented. The dimensionality reduction was performed using the principal component analysis (PCA). The classification accuracy data presented
here are the averaged values calculated across all tested subjects. The small capped lines on the bars represent single standard deviation. We used the TD5
feature set that consisted of 5 TD features calculated for each analysis window, i.e., root mean square (RMS), mean absolute value (MAV), the number of
zero crossings (ZC), waveform length (WL), and the number of slope sign changes (SSC). For the dimensionality reduction, PCA-5 indicates that first five
components of the PCA were used as the new feature set and so on. It is evident that the dimensionality reduction decreased the classification accuracy for
all algorithms. We also note that the LDA performed better than all other classification algorithms. B: The classification accuracy of LDA, SVM, and ANN
for the feature set TD8. The feature set TD8 included all features of the TD5 as well as the variance (VAR) of the EMG signal, Willison amplitude (WA), and
mean absolute value slope (MAVS). C: The classification accuracy values for the LDA classifier using four different feature sets without and with increasing
number of principal components of the PCA. Please refer to Table 1 for the definition of different features.
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Fig. 5. The classification accuracy for three different classification algorithms, i.e., LDA, SVM, and ANN for all twelve participants using TD5 feature set.
The last bars in all three subfigures represent the average data calculated using classification accuracies of all participants. The small caped lines over the bars
present single standard deviation. It is evident that the LDA provided the highest classification accuracy for all individuals as well as in the averaged data.

accuracies; however, it is evident that the LDA outperformed other
two algorithms, i.e., the SVM and ANN in classification accuracy.
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Fig. 6. Classification error in percentage for the LDA classifier using six
different feature sets. The TD5-AR4, TD5-AR4-FD, and TD8-AR4-FD
showed comparable performance.

3.3 Feature Set
The classification error values of the LDA classifier for six differ-
ent feature sets calculated using EMG data from all twelve subjects
are presented in Fig. 6. We observed that three feature sets, i.e.,
TD5-AR4, TD5-AR4-FD, and TD8-AR4-FD provide the compa-
rable performance across all tested participants.

3.4 Confusion Matrix
We present the confusion matrix for the LDA classifier with the
TD5 feature set in Table 2 for six movements and a rest class. The
percentage values presented in the confusion matrix were averaged
across all participants.

Table 2. Confusion matrix (%) for the LDA classifier using TD5
feature set. HO - hand open; HC - hand close; WF - wrist flexion;
WE - wrist extension; PR - pronation; SP - supination; RT - rest.

HO HC WF WE PR SP RT
HO 83.14 0.11 0.22 0.32 0.59 0.18 15.44
HC 1.51 82.52 0.01 0.00 0.23 0.19 15.54
WF 1.10 0.10 83.02 0.00 0.71 0.11 14.95
WE 1.42 0.00 0.00 82.30 0.28 0.00 16.00
PR 0.04 0.17 0.21 0.20 83.34 0.30 15.74
SP 0.74 0.24 0.09 0.14 0.20 81.22 17.38
RT 0.04 0.09 0.02 0.09 0.35 0.65 98.75

4. DISCUSSION
We aimed to investigate the movement classification problem, i.e.,
the estimation of the movement intent, for the EMG-controlled
transradial prosthesis using the surface EMG data from forearm
muscles. The identified movement intent by the machine learning
algorithm is passed on as the control information to the actuation
mechanism of the prosthetic device. The performance of these pros-
thetic devices significantly depends on the classification accuracy
of the employed machine learning algorithms [4], [16], [24], [27].
The accuracy of these machine learning algorithms, in turn, may
significantly be affected by the choice of the type and the number
of features, the dimensionality reduction technique, as well as, the
type of the classification algorithm used. Therefore, using the EMG
data from twelve healthy participants, we set out to find a com-
bination of feature set with/without dimensionality reduction, and
classification algorithm, that provided highest classification accu-
racy. Our investigation included three different classification algo-
rithms, i.e., LDA, SVM, and ANN, dimensionality reduction using
the PCA, and various combinations of time domain (TD), autore-
gressive (AR), and frequency domain (FD) features (Fig. 2B).

We used the PCA algorithm to reduce the dimensionality of a range
of feature sets before performing classification using the LDA,
SVM and ANN algorithms. We found that, for our EMG data, 10
principal components were able to explain more than 98% of the
data variability (Fig. 3); however, we still used a range of principal
components for our analyses, i.e., 5, 10, · · · , 25. We observed that
using the PCA algorithm, the classification accuracy for all algo-
rithms, i.e., LDA, SVM, and ANN (Fig. 4A and B) and for different
feature sets (Fig. 4C) significantly decreased. The classification ac-
curacy only improved if the number of principal components was
increased. We speculate that due to the linear nature of the PCA
projections, the nonlinear information in the EMG features was
not adequately represented in the PCA reduced data. Therefore, we
conclude that it is essential to provide the whole feature sets to the
classification algorithms rather than their principal components es-
timated using the PCA algorithm.
In our analysis, we tested three representative classification algo-
rithms from linear as well as nonlinear domain, i.e., the LDA, SVM,
and ANN. We observed that out of all tested algorithms, the LDA
outperformed other two, i.e., SVM and ANN in the classification
accuracy for all different feature sets (Fig. 5). The LDA also pro-
duced highest classification accuracies for all individuals, i.e., com-
pare each participant’s classification accuracy across all three clas-
sifiers [28]. We believe that the superior performance of the LDA
resulted due to its linear structure, i.e., once we have a representa-
tive feature set that captured adequate information from the EMG
data, a simple linear classifier, such as the LDA, was adequate to
achieve good classification accuracies.
Keeping in view the complex nature of the EMG signal, we used
features from the EMG amplitude (referred to as the time domain or
TD), spectrum (referred to as the frequency domain or FD), as well
as, EMG stochastic modeling coefficients (referred to as the autore-
gressive modeling, AR). We calculated fourteen different features
and then combined these into six feature sets, i.e., TD5, TD8, TD5-
AR4, TD5-AR4-FD, TD8-AR4, and TD8-AR4-FD (Table 1). We
observed that increasing the number of features in a feature set in-
creased the classification accuracy (Fig. 6), i.e., TD5 to TD8 and
then to TD5-AR4. However, in the case of TD8-AR4, we observed
a reduction in the classification accuracy. Furthermore, adding the
spectral information, i.e., FD features increased the classification
accuracy for both TD5-AR4 and TD8-AR4 feature sets. Overall,
we found the highest classification accuracy was achieved with fea-
tures that used information from the EMG amplitude, spectrum as
well as stochastic modeling, i.e., feature sets TD5-AR4-FD and
TD8-AR4-FD. On the other hand, the TD5-AR4 also performed
equally good and also entailed the minimum number of compu-
tations. Therefore, we consider that the TD5-AR4 was the most
efficient feature set for our data.
We also investigated the confusion matrix, i.e., how different move-
ments were confused with each other by the LDA algorithm for the
given EMG data. We observed the ‘rest’ (RT) was highly confused
with all movements (i.e., HO, HC, WF, WE, PR, SP). All other
confusions of movements with each other were significantly lower.

5. CONCLUSION
We performed detailed investigated into machine learning schemes
used for the EMG-controlled prosthetic devices. Specifically, we
focused on different features of the EMG signal based on its ampli-
tude, spectral contents, and stochastic modeling. We also investi-
gated the effect of dimensionality reduction as well as used various
classification algorithms including the LDA, SVM, and ANN. The
highest classification accuracies were recorded for a feature set that
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employed EMG amplitude, spectral, as well as stochastic modeling
information with any form of dimensionality reduction. Further, the
simple linear classifier, i.e., LDA outperformed SVM and ANN al-
gorithms in classification accuracy.
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