
International Journal of Computer Applications (0975 – 8887)

Volume 174 – No.6, September 2017

20

Effect of Explicit Constraint by Comparative Study of

Techniques for Solving N-Queens Problem

Omkar Buchade

Department of Computer
Engineering,

All India Shri Shivaji Memorial
Society’s Institute of Information

Technology,
Pune, Maharashtra, India

Nilesh Mehta

Department of Computer
Engineering,

All India Shri Shivaji Memorial
Society’s Institute of Information

Technology,
Pune, Maharashtra, India

Vaibhav Suryawanshi

Department of Computer
Engineering,

All India Shri Shivaji Memorial
Society’s Institute of Information

Technology,
Pune, Maharashtra, India

ABSTRACT

N-Queen is a well-known problem which states that for a

given N x N chessboard, place N queens in such a way that no

two queens can attack each other. Thus, two Queens should

not lie in the same row, column or diagonal to each other.

There are various approaches to solve this problem like Brute

Force, Backtracking, Branch and Bound, Ant Colony

Optimization, Particle Swarm Optimization, Genetic

Algorithm, Dynamic Programming Solution, etc. [1]. In this

paper, a comparative study and analysis of computation time

required to solve N-Queen problem by Brute Force Search

and Backtracking approach is done. The corresponding graph

of computational time required by aforementioned two

algorithms is plotted to analyze their performance. Further, a

constraint is added to N-Queen problem where the position of

the first queen in the first row is kept fixed. Backtracking

approach is applied to the problem after addition of the

constraint and its results are compared with Backtracking

algorithm without any explicitly defined constraint. The

graphical analysis gives insight into their performance. Thus,

this paper would also provide the impact of an explicit

constraint on Backtracking algorithm.

General Terms

Brute Force Algorithm, Backtracking Algorithm.

Keywords

N-Queens, Brute Force Search, Backtracking, Constraint

Satisfaction, Heuristic.

1. INTRODUCTION
N-Queens is a classical chess problem in which placement of

queens should be such that no two queens can attack each

other. This can be achieved by positioning the queens such

that two queens do not share the same row, column and

diagonal. The eight queen puzzle was published by Max

Bezzel [2] in 1848 and the first solution was found out by

Franz Nauck in 1850. Nauck further extended this puzzle of N

queens to N x N squares. For N=8 i.e. 8 Queens problem,

Brute Force approach gives 4,426,165,368 possible

arrangements out of which only 92 are valid solutions. As the

value of N increases, the total computation cost increases

terribly. Thus, Brute Force approach is an expensive one. In

1972 Edsgar Dijkstra, using structured programming,

published a highly detailed description of Depth First

Backtracking algorithm [3]. Backtracking is an algorithm

which finds the solutions to computational problems such as

Constraint Satisfaction Problem by building the solution in an

incremental approach wherein the partial solution candidate

that does not lead to a solution are abandoned. This leads to

reduced arrangements as compared to Brute Force approach

which in turn reduces the computation cost.

In this paper, analysis of N-Queen problem using Brute Force

approach and Backtracking is performed and further, the

effect of addition of an explicit constraint on the performance

of the algorithm is observed. The constraint enforced is that

the location of the first queen is fixed. A simple algorithm for

finding all possible solutions of N x N queen problem using

recursive Backtracking by addition of one more constraint,

that is, fixing the position of the first queen in the first row is

implemented here.

2. TERMINOLOGY
For solving the N-Queen puzzle/problem according to Erbas

et.al.[4] two queens located at (,) and (,) can be

placed if and only if:

1. (not on the same row)

2. (not on the same column)

3. (not on same diagonal)

4. (not on same diagonal)

Diagrammatic representation of the above constraints is

shown below in figure 1.

Figure 1: Queen Movement in 2-Dimensional board

The solution for N Queens exists only for since for

 the constraints above cannot be satisfied. The table 1

below shows the number of possible solutions for a different

number of queens and the figure 2 shows a graphical

representation of the same.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No.6, September 2017

21

Table 1: Possible solutions corresponding to number of

Queens

Number of Queens Number of Solutions

3 0

4 2

5 10

6 4

7 40

8 92

9 352

10 724

Figure 2: Graphical representation of N-Queens solutions

3. BRUTE FORCE SEARCH
Brute Force Search, also called Exhaustive Search is one of

the most common problem-solving strategy, wherein all

possible solutions for a given problem are checked whether it

satisfies the condition required for the solution. This is one of

the simplest form of problem-solving strategy where the

solution is definitely generated if it exists, however, the cost

required for finding the solution to a problem increases with

the increase in the size of the problem. Thus, Brute Force

Search is used whenever the simplicity of implementation is

more important than the cost associated with the solution and

thus should be always applied for a smaller instance of the

problem. This technique can be improved when certain

heuristic is applied which can reduce the size of the problem.

For an 8-Queen problem using Brute Force Search, all

possible arrangements of 8 queen pieces on a 64 square chess

board are checked provided no two queens can threaten the

position of each other. Brute Force Search checks for each of

the 64 squares, each of the 8 queens can be placed in one of

the 64 squares in = ways.

However, as all the queens have the same property, no two

queens can be placed on the same square which reduces the

possibility of choosing 8 squares from a set of 64 squares, the

candidates of the solution being

 about of the

previous estimate. Further, a constraint is applied such that

two queens should not be in the same row or column or same

diagonal for a solution to exist. This would reduce the

candidate set for a solution [3][5].

Consider the case of solving the 4-Queen problem using Brute

Force method. The possible states after applying heuristic (no

two queens in the same row) are shown below in figure 3.

Figure 3: State Space Tree for 4 Queen problem using Brute Force approach

All the possible states are shown in the above state space tree

with the solution states and paths marked in red. The total

number of possible states for four queen problem after

applying a heuristic (one row will have only one queen) are

65.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No.6, September 2017

22

4. BACKTRACKING
Backtracking is an algorithm, generally recursive for finding

solutions to computational problems which are constraint

oriented i.e. Constraint Satisfaction Problem. It builds the

solution to a problem in an incremental approach. The partial

candidates are built to the complete solution until a proper

solution is found. However, partial candidates are ignored as

soon as it is found that partial candidate cannot lead to a

solution. This reduces the number of feasible options by

overlooking partial solution candidates that do not lead to a

solution thus giving a smaller number of possible states

reducing the time required for searching and computation. In

Backtracking, one of the possible moves is selected

consecutively until it leads to a solution. However, if the

current move does not lead to a solution, Backtracking is

performed to find some other move which may lead to a

solution. This process continues till a solution is found.

However, even after backtrack, if it doesn’t generate a

solution, it is claimed that for a given problem, solution

doesn’t exist [6]. Consider the case of solving the 4-Queen

problem again but now with Backtracking approach. The

possible states are shown below in the state space tree, with

the solution states and path marked in red. It can be clearly

seen from the state space tree figure 4 that the number of

states required by Backtracking is 33 which is far less

compared to Brute Force.

Figure 4: State Space Tree for 4 Queen problem using Backtracking approach

5. BACKTRACKING WITH ADDED

CONSTRAINT
In order to improve performance over Brute Force Search

approach, Backtracking was introduced which eliminated

partial candidate solutions which could not lead to a complete

solution. A problem may come with added constraints in

accordance to which the problem needs to be solved. In the

proposed work, the position of the first queen is kept fixed in

the first row and its effect on computation time is found out.

The aim is to find out to what extent does an introduction of a

constraint affects the algorithm. Greater the constraints,

smaller is the possible solution set for the problem which will

eventually lead to smaller computational time.

6. IMPLEMENTATION
In this work, following algorithms are used for the purpose of

implementation.

6.1 Algorithm for Brute Force
Input: No of Queens i.e. N

Output: The placement of Queens such that no two queens

attack each other.

Step 1: Place queens on all possible positions.

Step 2: Check each time if the queens cannot capture each

other. If not, then it has found a solution.

Step 3: Repeat step 2 until all possible solutions are found.

Note: Because of the vast amount of possible positions

(for a table of size N while each row has 1 queen), this

algorithm is not practical even for small table sizes (like

).

6.2 Algorithm for Backtracking

Input: No of Queens i.e. N

Output: The placement of Queens such that no two queens

attack each other.

Step 1: Start from first row, first column

Step 2: If all queens are placed

return true

Step 3: Try all rows in the current column. And do the

following for every tried row.

a) If queen is safe at position [row, column], mark this

position as a part of solution and recursively check if queen

at this position lead to a solution

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No.6, September 2017

23

b) Return True if the queen placed in [row, column] leads

to a solution

c) Unmark this [row, column] (Backtrack) if placing Queen

does not lead to a solution then go to step (a) to try other

rows.

Step 4: Upon checking of all rows, if solution is not

generated, return false and prompt Backtracking.

6.3 Algorithm for Backtracking with

added constraint
Input: No of Queens i.e. N
Output: The placement of Queens such that no two queens

attack each other.

Step 1: Place the first queen on the desired location in the first

row.

Step 2: Start from second row, first column

Step 3: If all queens are placed

 return true

Step 4: Try all rows in the current column. And do the

following for every tried row.

a) If queen is safe at position [row, column], mark this

position as a part of solution and recursively check if queen

at this position lead to a solution

b) Return True if the queen placed in [row, column] leads

to a solution

c) Unmark this [row, column] (Backtrack) if placing Queen

does not lead to a solution then go to step (a) to try other

rows.

Step 5: Upon checking of all rows, if solution is not

generated, return false and prompt Backtracking.

For Experimentation, the queen is placed at index=1 where

index ranges from 0 to N-1 where N is the number of Queens

on board.

7. RESULT
For experimentation, number of Queens are taken as input for

implementation. The system specifications used for

experimentation are given below in Table 2.

Table 2. Specifications of the System Used

Hardware Used
256 GB Hard Disk and 4 GB

RAM

Processor Type Intel Core i3-4130 CPU

CPU Speed 3.40 GHz

Number of Cores 4

Operating System Fedora 20, 64-bit

Execution Platform Terminal

The comparison of time taken by Brute Force, Backtracking

and different suggested algorithms for a number of Queens is

tabulated below in table 3 and table 4 and the corresponding

graphical representation is given in figure 5 and figure 6

respectively.

Table 3. Comparison between Number of Queens and

Execution time in milliseconds between Brute Force(BF)

and Backtracking(BT)

Number

of

Queens

Distinct

Solutions

BF time

BT time

4 2 49 15

5 10 51 20

6 4 48 20

7 40 84 26

8 92 140 36

9 352 372 102

10 724 534 449

11 2680 2119 2018

12 14200 20899 12389

13 73712 275000 76000

Table 4. Comparison of distinct solutions and Execution

time in millisecond between Backtracking (BT) without

adding explicit constraint vs Backtracking by adding

explicit constraint (BT with Cons)

No. of

Queens

Distinct

Solution

BT

time

Distinct

Solutions for

BT with Cons

BT

with

cons

time

4 2 15 1 12

5 10 20 2 14

6 4 20 1 11

7 40 26 7 19

8 92 36 8 36

9 352 102 30 38

10 724 449 48 69

11 2680 2018 219 219

12 14200 12389 806 983

13 73712 76000 3799 5188

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No.6, September 2017

24

Figure 5: Graphical comparison of execution time between Brute Force approach and Backtracking approach

The graph shows the execution time of Brute Force Search

and Backtracking approach for solving the N-Queens problem

for different number of Queens. It can be inferred from the

graph that, for smaller number of Queens the time taken by

Brute Force and Backtracking is nearly same. But as the

number of solutions increased, the time taken increased

exponentially. This is because Brute Force tries all possible

combinations available with minimal heuristics while

Backtracking approach prunes and Backtracks as soon as it

identifies that it cannot lead to a valid solution, thereby

reducing computation time. In Brute Force Search approach

Queens are placed at all possible position and only afterward

it is checked for the non-attacking position. Due to this the

number of solutions generated is very large as compared to

Backtracking approach. Thus for smaller number of Queens,

there is barely any difference between Brute Force Search and

Backtracking. However, as the number of Queens increased,

Backtracking clearly comes out as a better approach as Brute

Force will require larger computation time and resources.

Figure 6: Graphical comparison of execution time between Backtracking without constraint and Backtracking with constraint

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No.6, September 2017

25

From the graph, it is evident that computation of N Queen

problem with a constraint varies largely when compared to

normal Backtracking approach. Due to constraint, the number

of solutions of a problem reduces. This will require smaller

amount of computation and generate faster results. Thus,

N Queen problem with a constraint achieves way faster result

as compared to Backtracking without a constraint.

8. CONCLUSION
This paper does a comparative study of Brute Force approach

and Backtracking approach for finding solutions to a

Constraint Satisfaction Problem. Here N Queen problem is

considered for their comparative analysis. It is clear from the

study that Brute Force Search approach generates all possible

ways to place N Queens on the chess board and then tests to

make sure no two queens attack each other. On the other

hand, Backtracking approach identifies partial candidate

solution and removes them if they don’t look promising.

Thus, Backtracking approach requires less computational time

as compared to Brute Force Search. The paper further

analyses the impact of the presence of additional constraints

in a problem. From the results obtained, it shows that a

problem with additional constraint requires significantly less

computation time as compared to normal Backtracking. The

number of solutions generated in Backtracking with a

constraint is also less. Thus, when Brute Force and

Backtracking approach is employed, possible solutions for a

problem are same however the computational time is faster in

Backtracking. On the other hand, Backtracking with

constraint has lesser possible solutions and hence computes

significantly faster amongst others.

9. FUTURE WORK
This paper analyses the Brute Force Search, Backtracking

without any constraint and Backtracking approach with added

constraints up to number of queens being 13. This work can

be extended for higher number of queens and a mathematical

relation between computation time taken and the number of

solutions generated can be found out. For 8 queens, 92

solutions are generated out of which only 12 are unique, as

many solutions are just rotations of others. In order to avoid

this repetition of result, a technique called Symmetry

Breaking can be used which in turn will reduce the amount of

computation needed. [7] The analysis can also be further

extended to 3 and more dimensional board. [8]

Implementation of Permutation Matrix which is regarded as a

set of N points lying on a square of N x N chessboard such

that each row or column contains only one point. Permutation

Matrix can hence be used for adding heuristics to Brute Force

Search and thus improving the algorithm for larger number of

Queens. [9]

10. REFERENCES
[1] S. Pothumani, “Solving N Queen Problem Using Various

Algorithms – A Survey”, International Journal of

Advanced Research in Computer Science and Software

Engineering, Volume 3, Issue 2, February 2013

[2] F.W.M. Bezzel. Proposal of eight queens problem.

Berliner Schachzeitung, 1848.

[3] Eight queens puzzle [Online]

https://en.wikipedia.org/wiki/Eight_queens_puzzle

[4] C.Erbas and M.M. Tanik S. Sarkeshik. “Different

perspectives of the n-queens problem”, Proceedings of

the 1992 ACM Annual Conference on Communications,

ACM Press, page 99108, 1992

[5] Brute-force search [Online]

http://en.wikipedia.org/wiki/Brute-force_search.

[6] Backtracking [Online] http://en.wikipedia.org/wiki/

Backtracking.

[7] Toby Walsh, “Symmetry Breaking”, National ICT

Australia and School of CSE, University of New South

Wales, Sydney, Australia, tw@cse.unsw.edu.au

[8] Soham Mukherjee, Santanu Datta, Pramit Brata Chanda

and Pratik Pathak, “Comparative Study of Different

Algorithms to Solve N Queens Problem”, International

Journal in Foundations of Computer Science &

Technology (IJFCST), Vol.5, No.2, March 2015

[9] Jordan Bell, Brett Stevens, “A survey of known results

and research areas for n-queens”, Elsevier, Volume 309,

Issue 1, 6 January 2009.

IJCATM : www.ijcaonline.org

http://www.sciencedirect.com/science/article/pii/S0012365X07010394?via%3Dihub#!
http://www.sciencedirect.com/science/article/pii/S0012365X07010394?via%3Dihub#!

