
International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.9, September 2017

Probabilistic Analysis of Perfect Partitioning in
Randomized Quicksort

Vivek Kumar
THDC - Institute of Hydropower Engineering and Technology

Uttarakhand
India

Mahesh Kumar Aghwariya
THDC - Institute of Hydropower Engineering and Technology

Uttarakhand
India

ABSTRACT
The paper analyzes the probability of a scenario where
Randomized-Quicksort performs a perfect partitioning of the in-
put array. The RANDOMIZED PARTITION procedure, which is
a subroutine of the Randomized-Quicksort, randomly picks an ele-
ment of the given array as the pivot element, it then partitions the
array around that element. A perfect partitioning occurs when ev-
ery successive call to the RANDOMIZED-PARTITION procedure
results in the picking of the median element as the pivot element,
which partitions the array into two halves consisting of exact no. of
elements. In this scenario, the algorithm yields an Θ(n lg n) run-
time.

Keywords
Quicksort, Randomized-Quicksort

1. INTRODUCTION
Sorting is one of the primitive task that is faced during the
designing of various software systems. Over the years many
sorting algorithms have been proposed which perform the task
in efficient manner. One such algorithm is Quicksort, developed
by C. A. R. Hoare[1]in 1962, the algorithm is recipient of much
of the research work in the field of sorting. The algorithm is
inflicted with Θ(n2) worst case runtime, if the array is already
sorted. A randomized version of quicksort however, ensures an
Θ(n lg n) expected runtime for an array of size n. This variant of
Quicksort differs from the classical algorithm in the way it chooses
the pivot element for partitioning. While the classical Quicksort
deterministicaly picks the pivot element in the given array, the
randomized version of quicksort makes the choice randomly
i.e, it randomly picks the pivot elements for partitioning. The
probabilistic analyses of the randomized version of quicksort gives
a Θ(n lg n) expected run time of the algorithm for an array of size n.

In this paper, the probability of perfect partitioning in Randomized-
Quicksort is explored. As discussed, perfect partitioning occurs
when every successive call to the Randomized-partition procedure
of the Randomized-Quicksort yields a median element as the pivot
element, which partitions the array into two equal halves. The
algorithm in this case always gives an Θ(n lg n) runtime. The next
section presents the randomized version of Quicksort and the later
section discusses the probability of such an event.

2. RANDOMIZED QUICKSORT
The randomized version of quicksort[2] consists of three pro-
cedures. In addition to the two procedures of classical quick-
sort, RANDOMIZED-QUICKSORT has one more procedure, the
RANDOMIZED-PARTITION. The RANDOMIZED-PARTITION
procedure (Algorithm 2) picks a random index, i, between array
indices p and r, it then swaps the element at index i with element
at index r. Next, a call to the PARTITION procedure (Algorithm
1) is made which partitions the input array A around this randomly
chosen pivot element. The RANDOMIZED-QUICKSORT (Algo-
rithm 2) recursively partitions the array until it is arranged in sorted
(ascending) order.
The RANDOMIZED-QUICKSORT procedure has been proved to
yield a Θ(n lg n) expected running time. The next section de-
liberates the probability of an event where the RANDOMIZED-
PARTITION procedure performs a perfect partitioning.

1: function PARTITION(A, p, r)
2: x← A[r]
3: i← p− 1
4: for j ← p to r − 1 do
5: if A[j] ≤ x then
6: i← i + 1
7: exchange A[i] with A[j]
8: end if
9: exchange A[i + 1] with A[r]

10: end for
11: return i + 1
12: end function

Algorithm 1: The PARTITION procedure

1: function RANDOMIZED-PARTITION(A, p, r)
2: i← RANDOM(p, r)
3: exchange A[r] with A[i]
4: return PARTITION(A, p, r)
5: end function

Algorithm 2: The RANDOMIZED-PARTITION procedure

1: function RANDOMIZED-QUICKSORT(A, p, r)
2: if p < r then
3: q ← RANDOMIZED-PARTITION(A, p, r)
4: RANDOMIZED-QUICKSORT(A, p, q-1)
5: RANDOMIZED-QUICKSORT(A, q+1, r)
6: end if

1

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.9, September 2017

7: end function

Algorithm 3: The RANDOMIZED-QUICKSORT procedure

3. THE PERFECT PARTITIONING
The RANDOMIZED-PARTITION procedure randomly picks an
element as the pivot element. This element may or may not
be the median element of the array. Consider a case where the
RANDOMIZED-PARTITION procedure always picks the median
element as the pivot element. This will always lead to the parti-
tioning of the array into two equal halves in every successive call
to the RANDOMIZED-PARTITION procedure. In such a scenario
the runtime for RANDOMIZED-QUICKSORT will be

T (n) = T (n/2) + T (n/2) + Θ(n) (1)

which will give an Θ(n lg n) runtime for an array of size n.

Let us define the event Ei, for i = 1, 2, ...,n to be the event
that an ith recursive call to the RANDOMIZED-PARTITION
procedure leads to the picking of the median elements as the pivot
element of all the sub-arrays in the same recursive depth. In other
words,

E1 the event where the first call to the RANDOMIZED-
PARTITION yields the median element as the pivot
element leading to the partitioning of the array into
two equal halves consisting of n/2 elements each.

E2 the event where the second call to the
RANDOMIZED-PARTITION yields the median
elements of the two arrays (resulting from the first
call) leading to the partitioning of the array into 4
equal halves consisting of n/4 elements each.

. .

. .

. .
En the event where every single element is pivot in itself

and the array is sorted.

The probability that we are seeking is the probability of the inter-
section of the events E1 ∩E2 ∩ ... ∩En, and so we have

Pr{E1 ∩E2 ∩ ... ∩En} = Pr{E1}.P r{E2|E1}.P r{E3|E1 ∩E2}...
P r{En|E1 ∩E2 ∩ ...En−1}

(2)

There are two assumptions that are taken during the course of this
analysis. Firstly, we ignore the floor and ceiling on the size of the
partitioned array, i.e, even though for an array of size n with the
pivot element being the median, the partitioned array will contain
n/2 and n/2 − 1 elements respectively, we will assume the size
to be n/2 and n/2 respectively. Secondly, the size of the array is
assumed to be a power of 2, i.e, n = 2k for some integer, k ≥ 0.

Initially, for the original array of size n, the probability of
RANDOMIZED-PARTITION picking the median element as the
pivot element will be

Pr{E1} =
1

n
(3)

Post this event, the array will be partitioned into two equal
halves containing n/2 elements each. The probability of

RANDOMIZED-PARTITION picking median elements of these
two arrays as the respective pivot elements is

Pr{E2|E1} =
1

n/2
.

1

n/2
=

22

n2
(4)

Similarly,

Pr{E3|E1 ∩E2} =
1

n/4
.

1

n/4
.

1

n/4
.

1

n/4
=

(22)2
2

n22
(5)

and so on. The probability of intersection of these events becomes
(from eq. 2)

Pr{E1 ∩E2 ∩ ... ∩En} =

lgn∏
i=0

(
2i

n

)2i

(6)

Pr{E1 ∩E2 ∩ ... ∩En} =
1

n
×
(

2

n

)2

×
(

22

n

)22

××(
2lgn−1

n

)2lgn−1

× 1

lg (Pr) = lg

(
1

n

)
+ lg

(
2

n

)2

+ lg

(
22

n

)22

++

lg

(
2lgn−1

n

)2lgn−1

+ 0

= lg

(
1

n

)
+ 2 lg

(
2

n

)
+ 22 lg

(
22

n

)
++

2lgn−1lg

(
2lgn−1

n

)
+ 0

= lg1− lgn + 2− 2lgn + 2.22 − 22lgn + 3.23

− 23lgn + + (lgn− 1).2lgn−1−
2lgn−1lgn

= (lg1 + 2 + 2.22 + 3.23 ++

(lgn− 1).2lgn−1)− lgn(20 + 21 + 22 + 23+

..... + 2lgn−1)

= nlgn + 2− 2n− lgn(n− 1)

= 2− 2n + lgn

Pr{E1 ∩E2 ∩ ... ∩En} = 22−2n+lgn

(7)

4. CONCLUSION
The last section deliberated the probability of perfect partitioning
for RANDOMIZED-QUICKSORT procedure. Given the low prob-
ability of perfect partitioning the RANDOMIZED-QUICKSORT
still manages to give a Θ(n lg n) expected runtime which is due
to its good performance even in the scenarios of unbalanced parti-
tioning. This makes Quicksort a widely used sorting algorithm in
various computational tasks.

5. REFERENCES
[1] Hoare, C.A., 1962. Quicksort. The Computer Journal, 5(1),

pp.10-16.
[2] Coremen, L., Rivest, Stein Introduction to Algorithm. PHI pub-

lication.

2

	Introduction
	Randomized Quicksort
	The Perfect Partitioning
	Conclusion
	References

