
International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

6

Big Data Analysis with Apache Spark

Pallavi Singh
Software Engineer

J.C Penney

Saurabh Anand
Software Engineer

JC Penney

Sagar B. M.
Professor, RV College of
Engineering, Bangalore

ABSTRACT

Manipulating big data distributed over a cluster is one of the

big challenges which most of the current big data oriented

companies face. This is evident by the popularity of

MapReduce and Hadoop, and most recently Apache Spark, a

fast, in-memory distributed collections framework which

caters to provide solution for big data management. This

paper, present a discussion on how technically Apache Spark

help us in Big Data Analysis and Management. The paper

aims to provide the conclusion stating apache Spark is more

beneficial by almost 50 percent while working on big data. As

when data size was increased to 5*106 the time taken was

drastically reduced by around 50 percent compared to when

queried Cassandra without Spark. Cassandra is used as Data

Source for conducting our experiment. For this, a experiment

is conducted comparing spark with normal Cassandra DataSet

or ResultSet. Gradually increased the number of records in

Cassandra table and time taken to fetch the records from

Cassandra using Spark and traditional Java ResultSet was

compared. For the initial stages, when data size was less than

10 percent, Spark showed almost an average response time

which was almost equal to the time taken without the use of

Spark. As the data size exceeded beyond 10 percent of records

Spark response time dropped by almost 50 percent as

compared to querying Cassandra without Spark .Final record

was analyzed at 5*106 records. As the data size was

increased, Spark was proved better than the traditional

Cassandra ResultSet approach by almost reducing the time

taken by 50 percent for really big dataset as our case of 5*106

records.

General Terms

Bigdata

Keywords

Spark, RDD, MapReduce, Hadoop, Cassandra

1. INTRODUCTION
Data science has matured massively over the past few years

and along with that the need for a different approach to data

and its immensity also increased. An efficient framework is

essential to design, implement and manage the required

pipelines and algorithms to fulfill the computational

requirements of immense data analysis [1]. To solve the afore

mentioned problem Apache Spark [2] is a prominent system

for large-scale data analysis across a variety of operations.

Apache Spark is for distributed computing. A typical Spark

program runs parallel to many nodes in a cluster.

The need for this fast and scalable system led to evolution of

Spark. However, the developer needs to have requirement

clear for the use of Spark. One should not prefer Spark for

small data set as cluster environment needs a good

understanding.

This paper, aims a demonstration to show how Spark is

efficient for big data.

1.1 Apache Spark
It is a framework for performing general data analytics on

distributed computing cluster [3] . Apache Spark is a all-

around cluster computing engine with its support in Scala,

Java and Python and libraries for streaming, graph processing

and machine learning. Spark is an open source big data

management framework which is built around easiness of use,

speed and high degree analytics. Spark gives us a wide-

ranging, collective framework for big data management and

processing requirements with a variety of data sets that are

diverse in nature as well as the source of data. It makes use of

memory and can exploit disk also for processing data. The

concept of MapReduce [4] is basically used by Spark and

goes beyond it to efficiently use varied computations which

includes Interactive Queries and Stream Processing.

2. BACKGROUND STUDY
Business is growing at a rapid pace and so is the data

generated. Internet has evolved as a tool for public and data

began to increase both in interconnectedness and volume.

Analyzing this data has become need for the hour.

Data can be fetched without cluster computing for smaller

data set but if data set is huge, processing is slow which leads

to need for cloud computing. An environment which provides

streaming capabilities making platform for speedy data

analysis is needed.

In recent years, software developers have been investing on

ways of data processing.

Spark has evolved as one the most efficient data processing

[5] technique. It is evolutionary change in bid data processing

environments as it provides batch as well as streaming

capabilities.

3. WORKFLOW ARCHITECTURE
Our Workflow architecture for the demonstration of working

with Spark and Cassandra consist of creating Spark context

and then retrieving data from Cassandra. The input from

Cassandra is taken and is serialized into POJO (Plain Old Java

Object). Based on architecture above, Spark application is

created, it in turn creates the Spark context. After creation of

Spark context driver and worker is initialized in cluster mode.

Then the executer will have task for call of Cassandra and

retrieve all data present inside respective table. This data is

stored in RDD (Resilient Distributed Data Set). RDD is data

unit of Spark which stores all Cassandra records which was

mapped to our POJO (Object created on the basis of

Cassandra row). Each dataset in RDD is divided into multiple

logical partitions, and each partition may be computed on

different nodes of the cluster. This is what makes the Spark

more fast as it is separately executed on different nodes. Now

in demonstration a action is applied on top of the RDD to

retrieve the count of records. Figure 1 shows how Spark

application is built and at last Cassandra data fetch task is

created in worker.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

7

Figure 1. Spark Architecture for Cassandra Data Fetch

4. DRIVER AND EXECUTER MEMORY

MANAGEMENT
The process that runs the code creates RDDs, for

SparkContext in driver. The launch of Spark Shell signifies a

driver creation in program. The application finishes on the

termination of the driver.

The driver program splits the Spark application into the task.

It schedules those task to run on the executor. The driver

contains the task scheduler and distributes task among

workers. The two main roles of drivers are to Convert user

program into the task and Schedule task on an executor.

The machine on which the Spark Standalone cluster manager

runs is the Master Node. The resources are allocated by

Master "Workers" running throughout the cluster are used for

creation of Executors for the "Driver". Driver process needs

resources to run jobs/tasks. To fulfil this, the "Master"

allocates the resources and "Workers" running throughout the

cluster is used to create "Executors" for the "Driver". After

that, Driver runs tasks on Executors [6].

5. STORAGE LAYER AND BIG DATA

PROCESSING IN SPARK:
Spark need not use storage system provided by Hadoop [7]. It

has support for storage systems which implement Hadoop

APIs.

Spark holds the intermediary output in memory alternatively

every time writing it to disk which makes it very time

efficient mainly in scenarios where there is need to work

around same dataset multiple times. Spark will try to store as

much as data in memory and will only write left over or

spilled data to disk. So it can store part of a data set in

memory and the remaining which cannot be saved in memory

data on the disk. Spark comes with performance advantage.

Big data queries is over all optimized with the lazy evaluation

technique. Unless any processing is required for actions Spark

will always postpone processing. This lazy evaluation method

opted by Spark gives a lot of opportunities to introduce low-

level optimizations. A transformation action of Spark that was

count operation is used. All data from Cassandra in RDD is

taken and then count action is done on that. But then also for

big dataset, impact was minimal.

6. PERFORMANCE EVALUATION ON

BASIS OF DEMONSTRATION
On analyzing the performance of both Spark job and Result

Set of Cassandra to Fetch User Information Application, the

performance of Spark job is more when compared to that of

result set on Cassandra by almost Spark taking 50 percent less

time when working with Big Data. In an ideal scenario,

Cassandra result set is applicable only for small data set as in

our case, for dataset size of 106 records Cassandra result set

approach was time efficient as compared to Spark. As date

records increased beyond 106 Spark was ultimately proved

efficient.

For evaluating the performance of Spark and Cassandra one

table in Cassandra is created with one column as primary key.

Then through code increased the number of records in table in

table gradually. And after every increase compared the time

taken to do a fetch of total number of records in table.

Cassandra result set proved to be good initially for few

records. But as records increased, the efficiency of Spark was

far better as shown in table by average of almost 50 percent

more efficient.

Below table shows analysis:

Figure 2. Result Set Approach for Cassandra Data Fetch

Time Taken

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

8

Figure 3. Spark Approach for Cassandra Data Fetch Time

Taken

7. CONCLUSION
This paper, undergoes performance evaluation between Spark

and Cassandra result set. For evaluation, Fetch user

Information Application was created to get the retrieval time

for records via Spark and Cassandra data set. A comparison

was carried out by connecting to Cassandra and creating

Cassandra data set against Spark result.

On comparing overall performance, Spark exceeds the

Cassandra data set by taking almost half of the time lesser

than the latter. In conclusion, the Spark is more efficient than

the Cassandra call for the big data. As we can see from the

figure 2 and 3, as data size increases from 4*106 to 5*106 the

efficiency of Spark is even greater than 50 percent in terms of

time taken for query and this trend continues as data

increases.

Future work will include interactive analysis of exceptions,

handling of streaming capabilities , the extension of safety and

QoS policies, and the integration of other platforms,

multidimensional data analysis, as another parallel execution

framework. Apache Spark is predicted to be the next big

change in data analytics and is regarded by many as a worthy

research, to the MapReduce, the data processing which is

powering Hadoop. Spark allows data processing unlike

MapReduce. MapReduce causes considerable queuing delays

not desirable in several real time data based applications.

8. REFERENCES
[1] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of

data provenance in e-science. SIGMOD Rec.,34(3):31–

36, 2005.

[2] Spark: Cluster Computing with Working Sets. Matei

Zaharia, Mosharaf Chowdhury, Michael J. Franklin,

Scott Shenker, Ion Stoica. HotCloud 2010. June 2010.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified data

processing on large clusters. Commun. ACM,51(1):107–

113, 2008.

[4] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce for

data intensive scientific analyses. In ESCIENCE ’08,

pages 277–284, Washington, DC, USA, 2008. IEEE

Computer Society.

[5] R. Bose and J. Frew. Lineage retrieval for scientific data.

processing: a survey. ACM Computing Surveys, 37:1–

28,2005.

[6] Discretized Streams: An Efficient and Fault-Tolerant

Model for Stream Processing on Large Clusters. Matei

Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, Ion

Stoica. HotCloud 2012. June 2012.

[7] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.

Map-reduce-merge: simplified relational data processing

on large clusters. In SIGMOD ’07, pages 1029–1040.

ACM, 2007.

IJCATM : www.ijcaonline.org

http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf
http://people.csail.mit.edu/matei/papers/2012/hotcloud_spark_streaming.pdf
http://people.csail.mit.edu/matei/papers/2012/hotcloud_spark_streaming.pdf

