
International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

1

A Method of Subgraphs Extraction in a Large Graph

Database in a Distributed System

Ritu Yadav
National Institute of Technology, Warangal

Bangalore, India

Samarth Varshney
National Institute of Technology, Warangal

Bangalore, India

ABSTRACT

Since many real applications such as web connectivity, social

networks, and so on, are emerging now-a-days, thus graph

databases have been commonly used as significant tools to

exemplify and query complex graph data wherein each vertex

in a graph usually contains information, which can be

modeled by a set of tokens or elements. The method for

subgraphs extraction by considering set similarity query over

a large graph database has already been proposed, which

retrieves subgraphs that are structurally isomorphic to the

query graph, and meanwhile satisfy the condition of vertex

pair matching with the (dynamic/fixed) weighted set

similarity in a centralized system. This paper explains the

efficient implementation of subgraphs extraction in a large

graph database in a distributed environment by considering

both vertex set similarity and graph topology which offers a

better price/performance ratio and increases availability using

redundancy when parts of a system fail than centralized

systems in case of a large dataset (i.e., a graph with

millions/billions of nodes wherein each node contains some

information) by performing parallel processing.

General Terms

centralized systems, graph databases, parallel processing,

subgraphs extraction

Keywords

apache spark, distributed systems, graph topology, set

similarity

1. INTRODUCTION
With the increasing growth in the generation of information

now-a-days from a wide range of sources, graphs have been

the simplest and the compact way to represent the complex as

well as simple information. Thus, graph databases have been

commonly used as significant tools to exemplify and query

complex graph data wherein each vertex in a graph usually

contains information, which can be casted by a set of tokens

or elements. The method for subgraphs extraction by

considering both graph topology and set similarity over a

large graph database retrieves subgraphs of the same topology

(structurally isomorphic) as that of the query graph, and

simultaneously satisfy the condition of vertex pair matching

with the (dynamic/fixed) weighted set similarity. In order to

achieve better query performance, all the techniques are

designed for the distributed systems using Apache Spark since

distributed systems possess many advantages over the

centralized ones:

•distributed systems offer a better price/performance ratio

than centralized systems

•redundancy increases availability when parts of a system fail

•applications that can easily be run simultaneously also offer

benefits in terms of faster performance vis-à-vis centralized

solutions

•distributed systems can be extended through the addition of

components, thereby providing better scalability compared to

centralized systems.

A number of solutions were formulated and proposed for

subgraphs extraction over a large graph database [1], [2], [3],

[4],[6]. Suppose a query graph Q and a large graph G is given,

then a typical subgraph matching query retrieves those

subgraphs in G that exactly match with Q in terms of both

graph structure and vertex labels[4]. However, in some real

graph applications, each vertex often contains a rich set of

tokens or elements representing features of the vertex, and the

exact matching of vertex labels is sometimes not feasible or

practical.

The motivation examples show that subgraphs extraction by

considering both graph topology and set similarity queries are

very useful in many real-world applications. To the best of

our knowledge, no prior work studied the subgraphs

extraction problem under the semantic of structural

isomorphism and set similarity with dynamic element weights

(called dynamic weighted set similarity). However a

traditional weighted set similarity [11] that focuses on fixed

element weight has already been proposed which is actually a

special case of dynamic weighted set similarity.

For the methods considering exact subgraph matching query

for subgraphs extraction requires that all the vertices and

edges are matched exactly. The Ullmann’s subgraph

isomorphism method [8] and VF2 [7] algorithm are costly for

large graphs since they do not utilize any index structure. A

distance-based multi-way join algorithm has also been

proposed by Zou et al. [3] for answering pattern match queries

over a large graph.

Each of the various methods formulated for subgraphs

extraction[9],[10] are inefficient in one or the other way when

the query is performed over a large graph database. Thus, we

proposed the method for subgraphs extraction in a large graph

database in a distributed system by taking into account both

one-to-one structural isomorphism and dynamic set similarity

of matching vertices.

Section 2 states the problem description in brief followed by

section 3 in which proposed system design is explained,

including the basic framework and all design modules and

their constraints including the flow diagram in distributed

environment. Section 4 presents the implementation details of

all modules, results, analysis and comparison of the results

with the existing method. Section 5 concludes the paper.

2. PROBLEM DESCRIPTION
Given a large graph G represented by ⟨V(G),E(G)⟩, where

V(G) is a set of vertices, E(G) is a set of edges is considered.

Each vertex v ∈ V(G) is associated with a set, S(v), of

elements. Query graph Q is represented by ⟨V(Q),E(Q)⟩. The

set of element domain is denoted by U, in which each element

a has a weight W(a) to indicate the importance of ‘a’. Weights

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

2

can change dynamically in different queries due to varying

requirements or evolving data in real applications.

Given: - A Query Graph, Q, with n vertices (u1 ,......,un)

 - A Data Graph G

 - A user-specified similarity threshold

To Find: A Subgraph match X of Q in G in a distributed

system

A subgraph match of Q is a subgraph X of G containing n

vertices of V(G), iff the following conditions hold:

1) There is a mapping function f, for each ui in V(Q) and vj ∈

V(G) (1≤ i ≤n, 1≤j≤n) it holds that f(ui)=vj;

2) sim(S(ui),S(vj)) ≥ where S(ui) and S(vj) are the sets

associated with ui and vj, respectively, and sim(S(ui),S(vj))

outputs a set similarity score between S(ui) and S(vj) ≥ ;

3) For any edge (ui , uk) ∈ E(Q), there is (f(ui),f(uk))∈ E(G)

(1≤ k ≤ n).

The query retrieves all subgraph matches of Q in graph G

under the semantic of the set similarity. Any similarity

method can be used, we have used weighted Jaccard

Similarity [1].

3. PROPOSED MODEL

3.1 Framework
All the phases of the framework are designed for the

distributed systems using Apache Spark. In the filtering phase,

we find frequent patterns of element sets of vertices in data

graph G. Then, data vertices are encoded into signatures, and

organized into Distributed Hash Tables. In order to reduce the

search space, an efficient two-phase pruning strategy is

proposed based on the frequent patterns found in the filtering

phase and signature. In the refinement phase, a dominating set

(DS)-based subgraph matching algorithm to find subgraph

matches with set similarity. A dominating set selection

method is proposed to select a cost-efficient dominating set of

the query graph.

In brief, the following contributions are made:

 •Frequent patterns of element sets of vertices and a structural

signature-based Distributed Hash Table (DHT) are first

constructed. A set of pruning techniques (vertical and

horizontal pruning) are performed and integrated together to

greatly reduce the search space of subgraphs extraction

queries.

•Set similarity pruning techniques (vertical, horizontal, anti-

monotone) are proposed that utilize the frequent patterns over

the element sets of data vertices to evaluate dynamic weighted

set similarity. Anti-monotone principle is also applied to

achieve high pruning power.

•Structure-based pruning techniques are proposed based on

the signature buckets.

•Subgraphs extraction is done based on the dominating set of

query graph. When filling up the non-dominating vertices of

the graph, a distance preservation principle is devised to prune

candidate vertices that do not preserve the distance to

dominating vertices.

•Thus, our approach can effectively and efficiently extract the

subgraphs along with set similarity and structural similarity in

a large graph database. Steps in Flow Chart:

1. Frequent patterns of element sets of vertices in data graph

G. (Filtering Phase)

2. Data vertices are encoded into signatures.

3. After encoding data vertices into signatures, they are

organized into Distributed Hash Tables.

4. In order to reduce subgraph matching with set similarity

search space, different pruning strategies are proposed.

5. Query Signatures are found and are put in signature buckets

to reduce the subgraph matching with set similarity search

space.

3.2 Techniques designed for subgraphs

extraction in distributed systems

3.2.1 Set Similarity Pruning
Given: a vertex u in a dominating set of query graph Q

To Find: candidate vertices of u in graph G.

3.2.1.1 Generation of Frequent ItemSets
Let U be the set of distinct elements in V(G). A pattern P is a

set of elements in U, i.e., P U. If an element set S(v) contains

all the elements of a pattern P, then we say S(v) supports P

and S(v) is a supporting element set of P. The support of P,

denoted by supp(P), is the number of element sets that support

P. If supp(P) is larger than a user-specified threshold minsup,

then P is called a frequent pattern.The computation of support

of pattern P (i.e., supp(P)) can be referred to [5].Thus,

following above technique, frequent patterns are generated.

 Further AS (Anti-Monotone Similarity) Upper Bound is

applied Using Inculsion Relation in order to prune vertices.

 Inculsion Relation : For two element sets S(v) and S(v') of

vertex v and v' respectively, if S(v) ⊆ S(v'), the relationship

of S(v) being a subset of S(v') is called inclusion relation.

Thus, AS Upper Bound is defined as-

Given : a query vertex u’s set S(u) and a data vertex v’s set

S(v),then AS upper bound :

UB(S(u),S(v))=
 ∈

 ∈
 ≥ sim(S(u),S(v)),

where,

W(a) denotes the weight assigned to element.

Since does not change once the query is given, AS upper

bound is anti-monotone with regard to S(v). That is, for any

set S(v)∈ S(v'), if UB(S(u'),S(v)) < τ, then UB(S(u),S(v')) < τ.

3.2.1.2 Pruning Techniques

3.2.1.2.1 Anti-Monotone Pruning
Given a query vertex u, for each accessed frequent pattern P

in the inverted pattern lattice, if UB(S(u),P) < τ, all vertices in

the inverted list L(P) and L(P') can be safely pruned, where P'

is a descendant node of P in the lattice.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

3

Fig 1: Framework for subgraphs extraction (query processing in a distributed system)

3.2.1.2.2 Vertical Pruning
Vertical pruning is based on the prefix filtering principle [18].

 Given a query set S(u) and a frequent pattern P in the lattice,

if P is not a one-frequent pattern (or its descendant) in S(u)’s

p-prefix, all vertices in the inverted list L(P) can be safely

pruned.

p-prefix of S(u) is calculated as:

Whenever we remove the element with the largest weight

from S(u), we check whether the remaining set S'(u) meets the

similarity threshold with S(u). ǁS(u)ǁ = ∈ .

If ǁS'(u)ǁ < τ×ǁS(u)ǁ , the removal stops. The value of p is

equal to |S'(u)|-1, where |S'(u)| is the number of elements in

S'(u)

3.2.1.2.3 Horizontal Pruning
We find LU(u) (length upper bound) by adding elements in

(U-S(u)) to S(u) in an increasing order of their weights. Each

time an element is added, a new set S'(u) is formed. We

calculate the similarity value between S(u) and S'(u). If

sim(S(u),S'(u)) ≥τ holds, we continue to add elements to S'(u).

Otherwise, the upper bound LU(u) equals to |S'(u)|-1.

All frequent patterns under Level LU(u) will be pruned.

3.2.2 Structure Based Pruning

A matching subgraph should not only have its vertices

(element sets) similar to corresponding query vertices, but

also preserve the same structure as Q. We design lightweight

signatures for both query vertices and data vertices to further

filter the candidates after set similarity pruning by structural

constraints.

3.2.2.1 Structural signatures

Two structural signatures are defined - query signature

Sig(u),data signature Sig(v) , for each query vertex u and data

vertex v, respectively.

To encode structural information –

 Sig(u)=Sig(v) should contain the element information of both

u=v and its surrounding vertices.

Procedure:

•First sort elements in element sets S(u) and S(v) according to

a predefined order

•Based on the sorted sets, we encode the element set S(u) by a

bit vector, denoted by BV(u), for the former part of Sig(u).

•Each position BV(u)[i] in the vector corresponds to one

element ai , where 1≤ i ≤ |U| and |U| is the total number of

elements in the universe U. If an element aj belongs to set

S(u), then in bit vector BV(u), we have BV(u)[j]=1, otherwise

BV(u)[j]=0 holds.

•Similarly, S(v) is also encoded using the above technique.

•For the latter part of Sig(u) and Sig(v) (i.e., encoding

surrounding vertices), we propose two different encoding

techniques for Sig(u) and Sig(v), respectively.

For Query Signature: Suppose a vertex u is given with m

adjacent neighbor vertices ui (i=1,...,m) in a query graph Q,

the query signature Sig(u) of vertex u is given by a set of bit

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

4

vectors, that is, Sig(u)={BV(u),BV(u1),...,BV(um)}, where

BV(u) and BV(ui) are the bit vectors that encode elements in

set S(u) and S(ui), respectively.

For Data Signature: Suppos a vertex v is given with n adjacent

neighbor vertices vi (i =1,..,n) in a data graph G, the data

signature, Sig(v), of vertex v is given by: Sig(v)=

[BV(v),V

], where v is a bitwise OR operator,

BV(v) is the bit vector associated with v, V

 is

called a union bit vector, which equals to bitwise-OR over all

bit vectors of v’s one-hop neighbors.

3.2.2.2 Signature Based DHT(Distributed

Hash Table)

To enable efficient pruning based on structural information,

we use Distributed Hash Table to hash each data signature

Sig(v) into a signature bucket.

3.2.2.3 Structural Pruning

Finding Similarity using Jaccard Similarity-

Given : Bit vectors BV(u) and BV(v)

To Find :similarity between BV(u) and BV(v)

sim(BV(u),BV(v))=
 ∈

 ∈

where ˄ is a bitwise AND operator and ˅ is a bitwise OR

operator, a∈ (BV(u) ˄ BV(v)) means the bit corresponding to

element a is 1, W(a) is the assigned weight of a.

For each BV(ui), we need to determine whether there exists a

BV(vj) so that sim(BV(ui),BV(vj)) ≥τ holds.

3.2.3 Dominating Set-based Subgraphs

Matching

An efficient dominating-set-based subgraph matching

algorithm (denoted by DS-Match) facilitated by a dominating

set selection method is proposed.

3.2.3.1 DS-Match Algorithm(for the

distributed systems)

It first finds matches of a dominating query graph (DQG) QD

formed by the vertices in dominating set DS(Q), then verifies

whether each match of QD can be extended as a match of Q.

By using DS-match algorithm, we can save filtering cost by

only finding candidate vertices for dominating vertices rather

than all vertices in Q and we can speed up subgraph matching

by only finding matches of dominating query vertices

Dominating Set :

 Let Q = (V,E) be a undirected, simple graph without loops,

where V is the set of vertices and E is the set of edges. A set

DS(Q) ⊆ V is called a dominating set for Q if every vertex of

Q is either in DS(Q), or adjacent to some vertex in DS(Q).

 In order to transform a query graph Q to a dominating query

graph QD, we first find a dominating set DS(Q) of Q. Then for

each pair of vertices ui,uj in DS(Q), we determine whether

there is an edge (ui,uj) between them and the weight of (ui,uj).

To find matches of dominating query graph, we propose the

distance preservation principle is used.

3.2.3.2 Dominating Set Selection
A query graph may have multiple dominating sets, leading to

different performance of SMS2 query processing. Thus, a

cost-efficient dominating set is found using a Minimum

Dominating Set (MDS) problem[2].

4. EXPERIMENTAL RESULTS
The modules which were discussed in the proposed paper

design model are implemented in the distributed system.

The focus of this implementation is on efficiency and time.

4.1 Datasets
Both synthetic as well as real datasets have been used to

evaluate the framework. The real dataset used is flight dataset

flight data of approximately 4,00,000 nodes wherein average

number of elements of each node is 5(source station ,

destination station, take_off time, landing_time, duration etc.)

and min threshold is set to 0.8

4.2 Experimental Setup
All the experiments are carried out on the operating system :

Ubuntu 14.04 using Scala Language and the development

environment used is Apache Spark 1.6.0.

Observations :

For the data graph of approximately 4,00,000 nodes, each

node having average number of elements of each node is 5

and min threshold is set to 0.8, 100 query graphs have been

extracted by starting from any random vertex

 The query response time for subgraph extraction in a large

graph database implemented with the centralized approach is

approx. 200 sec, while the query response time for the

distributed system is less than 170 sec.

5. CONCLUSION
In this paper, a distributed algorithm is proposed for

subgraphs extraction in a large graph database in a distributed

system by considering both vertex set similarity and graph

topology using Apache Spark which produces the same result

as the centralized system but speeds up the process by a

considerable amount (since the application can run

simultaneously) and also redundancy increases availability

when parts of a system fail. As followed from our

experiments, our distributed approach performs the same

processes in a lesser time with a greater flexibility and

scalability (through addition of components). The solution

devised can be combined easily with any type of application

such as social networks, Semantic Web, biological networks

and it will undoubtedly boost the performance since the

methodology carries out parallel processing. One of the

applications can be a chatting application wherein a query is

asked and the relevant response is desired. It can also be used

in any search engine that can use formulas more sophisticated

than words and for security purposes like in fingerprints

scanners, facial scanners, retina scanners and so on. Also, any

system that performs clustering would benefit from this fast

algorithms.

6. REFERENCES
[1] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient

subgraph matching on billion node graphs,” Proc. VLDB

Endowment, vol. 5, no. 9, pp. 788–799, 2012.

[2] P. Zhao and J. Han, “On graph query optimization in

large networks,” Proc. VLDB Endowment, vol. 3, nos.

1/2, pp. 340–351, 2010.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

5

[3] L. Zou, L. Chen, and M. T. Ozsu, “Distance-join: Pattern

match query in a large graph database,” Proc. VLDB

Endowment, vol. 2, no. 1, pp. 886–897, 2009.

[4] Y. Tian and J. M. Patel, “Tale: A tool for approximate

large graph matching,” in Proc. 24th Int. Conf. Data

Eng., 2008, pp. 963–972.

[5] H. He and A. K. Singh, “Closure-tree: An index structure

for graph queries,” in Proc. 222nd Int. Conf. Data Eng.,

2006, p. 38.

[6] W.-S. Han, J. Lee, and J.-H. Lee, “Turboiso: Towards

ultrafast and robust subgraph isomorphism search in

large graph databases,” in Proc. ACM SIGMOD Int.

Conf. Manage. Data, 2013, pp. 337–348.

[7] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A

(sub) graph isomorphism algorithm for matching large

graphs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26,

no. 10, pp. 1367–1372, Oct. 2004.

[8] J. R. Ullmann, “An algorithm for subgraph

isomorphism,” J. ACM, vol. 23, no. 1, pp. 31–42, 1976.

[9] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Capturing

topology in graph pattern matching,” Proc. VLDB

Endowments, vol. 5, no. 4, pp. 310–321, 2012.

[10] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan, “Nema:

Fast graph search with label similarity,” in Proc. VLDB

Endowment, vol. 6, no. 3, pp. 181–192, 2013.

[11] Liang Hong, Member, IEEE, Lei Zou, Member, IEEE,

Xiang Lian, Member, IEEE, and Philip S. Yu, Fellow,

IEEE, "Subgraph Matching with Set Similarity in a

Large Graph Database", IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, VOL.

27, NO. 9, SEPTEMBER 2015

IJCATM : www.ijcaonline.org

