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ABSTRACT 

Since many real applications such as web connectivity, social 

networks, and so on, are emerging now-a-days, thus graph 

databases have been commonly used as significant tools to 

exemplify and query complex graph data wherein each vertex 

in a graph usually contains information, which can be 

modeled by a set of tokens or elements.  The method for 

subgraphs extraction by considering set similarity query over 

a large graph database has already been proposed, which 

retrieves subgraphs that are structurally isomorphic to the 

query graph, and meanwhile satisfy the condition of vertex 

pair matching with the (dynamic/fixed) weighted set 

similarity in a centralized system. This paper explains the 

efficient implementation of subgraphs extraction in a large 

graph database in a distributed environment by considering 

both vertex set similarity and graph topology which offers a 

better price/performance ratio and increases availability using 

redundancy when parts of a system fail than centralized 

systems in case of a large dataset (i.e., a graph with 

millions/billions of nodes wherein each node contains some 

information) by performing parallel processing. 
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1. INTRODUCTION 
With the increasing growth in the generation of information 

now-a-days from a wide range of sources, graphs have been 

the simplest and the compact way to represent the complex as 

well as simple information. Thus, graph databases have been 

commonly used as significant tools to exemplify and query 

complex graph data wherein each vertex in a graph usually 

contains information, which can be casted by a set of tokens 

or elements. The method for subgraphs extraction by 

considering both graph topology and set similarity over a 

large graph database retrieves subgraphs of the same topology 

(structurally isomorphic) as that of the query graph, and 

simultaneously satisfy the condition of vertex pair matching 

with the (dynamic/fixed) weighted set similarity. In order to 

achieve better query performance, all the techniques are 

designed for the distributed systems using Apache Spark since 

distributed systems possess many advantages over the 

centralized ones: 

•distributed systems offer a better price/performance ratio 

than centralized systems  

•redundancy increases availability when parts of a system fail  

•applications that can easily be run simultaneously also offer 

benefits in terms of faster performance vis-à-vis centralized 

solutions 

•distributed systems can be extended through the addition of 

components, thereby providing better scalability compared to 

centralized systems. 

A number of solutions were formulated and proposed for 

subgraphs extraction over a large graph database [1], [2], [3], 

[4],[6]. Suppose a query graph Q and a large graph G is given, 

then a typical subgraph matching query retrieves those 

subgraphs in G that exactly match with Q in terms of both 

graph structure and vertex labels[4]. However, in some real 

graph applications, each vertex often contains a rich set of 

tokens or elements representing features of the vertex, and the 

exact matching of vertex labels is sometimes not feasible or 

practical. 

The motivation examples show that subgraphs extraction by 

considering both graph topology and set similarity queries are 

very useful in many real-world applications. To the best of 

our knowledge, no prior work studied the subgraphs 

extraction problem under the semantic of structural 

isomorphism and set similarity with dynamic element weights 

(called dynamic weighted set similarity). However a 

traditional weighted set similarity [11] that focuses on fixed 

element weight has already been proposed which is actually a 

special case of dynamic weighted set similarity. 

For the methods considering exact subgraph matching query 

for subgraphs extraction requires that all the vertices and 

edges are matched exactly. The Ullmann’s subgraph 

isomorphism method [8] and VF2 [7] algorithm are costly for 

large graphs since they do not utilize any index structure. A 

distance-based multi-way join algorithm has also been 

proposed by Zou et al. [3] for answering pattern match queries 

over a large graph. 

Each of the various methods formulated for subgraphs 

extraction[9],[10] are inefficient in one or the other way when 

the query is performed over a large graph database. Thus, we 

proposed the method for subgraphs extraction in a large graph 

database in a distributed system by taking into account both 

one-to-one structural isomorphism and dynamic set similarity 

of matching vertices.  

Section 2 states the problem description in brief followed by  

section 3 in which proposed system design is explained, 

including the basic framework and all design modules and 

their constraints including the flow diagram in distributed 

environment. Section 4 presents the implementation details of 

all modules, results, analysis and comparison of the results 

with the existing method. Section 5 concludes the paper. 

2. PROBLEM DESCRIPTION 
Given a large graph G represented by ⟨V(G),E(G)⟩, where 

V(G) is a set of vertices, E(G) is a set of edges is considered. 

Each vertex v ∈ V(G) is associated with a set, S(v), of 

elements. Query graph Q is represented by ⟨V(Q),E(Q)⟩. The 

set of element domain is denoted by U, in which each element 

a has a weight W(a) to indicate the importance of ‘a’. Weights 
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can change dynamically in different queries due to varying 

requirements or evolving data in real applications.  

Given: - A Query Graph, Q, with n vertices (u1 ,......,un)  

            - A Data Graph G  

            - A user-specified similarity threshold   

To Find: A Subgraph match X of Q in G in a distributed 

system  

A subgraph match of Q is a subgraph X of G containing n 

vertices of V(G), iff the following conditions hold:  

1) There is a mapping function f, for each ui in V(Q) and vj ∈ 

V(G) (1≤ i ≤n, 1≤j≤n)  it holds that f(ui)=vj;  

2) sim(S(ui),S(vj)) ≥   where S(ui) and S(vj) are the sets 

associated with ui and vj, respectively, and sim(S(ui),S(vj)) 

outputs a set similarity score between S(ui) and S(vj) ≥   ;  

3) For any edge (ui , uk) ∈ E(Q), there is (f(ui),f(uk))∈ E(G) 

(1≤ k ≤ n). 

The query retrieves all subgraph matches of Q in graph G 

under the semantic of the set similarity. Any similarity 

method can be used, we have used weighted Jaccard 

Similarity [1]. 

3. PROPOSED MODEL 

3.1 Framework 
All the phases of the framework are designed for the 

distributed systems using Apache Spark. In the filtering phase, 

we find frequent patterns of element sets of vertices in data 

graph G. Then, data vertices are encoded into signatures, and 

organized into Distributed Hash Tables. In order to reduce the 

search space, an efficient two-phase pruning strategy is 

proposed based on the frequent patterns found in the filtering 

phase and signature. In the refinement phase, a dominating set 

(DS)-based subgraph matching algorithm to find subgraph 

matches with set similarity. A dominating set selection 

method is proposed to select a cost-efficient dominating set of 

the query graph. 

In brief, the following contributions are made: 

 •Frequent patterns of element sets of vertices and a structural 

signature-based Distributed Hash Table (DHT) are first 

constructed. A set of pruning techniques (vertical and 

horizontal pruning) are performed and integrated together to 

greatly reduce the search space of subgraphs extraction 

queries.  

•Set similarity pruning techniques (vertical, horizontal, anti-

monotone) are proposed that utilize the frequent patterns over 

the element sets of data vertices to evaluate dynamic weighted 

set similarity. Anti-monotone principle is also applied to 

achieve high pruning power.  

•Structure-based pruning techniques are proposed based on 

the signature buckets. 

•Subgraphs extraction is done based on the dominating set of 

query graph. When filling up the non-dominating vertices of 

the graph, a distance preservation principle is devised to prune 

candidate vertices that do not preserve the distance to 

dominating vertices.  

•Thus, our approach can effectively and efficiently extract the 

subgraphs along with set similarity and structural similarity in 

a large graph database. Steps in Flow Chart: 

1. Frequent patterns of element sets of vertices in data graph 

G. (Filtering Phase)  

2. Data vertices are encoded into signatures.  

3. After encoding data vertices into signatures, they are 

organized into Distributed Hash Tables.  

4. In order to reduce subgraph matching with set similarity 

search space, different pruning strategies are proposed. 

5. Query Signatures are found and are put in signature buckets 

to reduce the subgraph matching with set similarity search 

space.  

3.2 Techniques designed for subgraphs 

extraction in  distributed systems 

3.2.1 Set Similarity Pruning 
Given: a vertex u in a dominating set of query graph Q 

To Find: candidate vertices of u in graph G. 

3.2.1.1 Generation of Frequent ItemSets 
Let U be the set of distinct elements in V(G). A pattern P is a 

set of elements in U, i.e., P   U. If an element set S(v) contains 

all the elements of a pattern P, then we say S(v) supports P 

and S(v) is a supporting element set of P. The support of P, 

denoted by supp(P), is the number of element sets that support 

P. If supp(P) is larger than a user-specified threshold minsup, 

then P is called a frequent pattern.The computation of support 

of pattern P (i.e., supp(P)) can be referred to [5].Thus, 

following above technique, frequent patterns are generated. 

 Further AS (Anti-Monotone Similarity) Upper Bound is 

applied Using Inculsion Relation in order to prune vertices. 

 Inculsion Relation : For two element sets S(v) and S(v') of 

vertex v and v' respectively, if  S(v) ⊆ S(v'), the relationship 

of S(v) being a subset of S(v') is called inclusion relation.  

Thus, AS Upper Bound is defined as- 

Given : a query vertex u’s set S(u) and a data vertex v’s set 

S(v),then AS upper bound :  

UB(S(u),S(v))= 
      ∈    

      ∈         
 ≥   sim(S(u),S(v)),  

where, 

W(a) denotes the weight assigned to element. 

Since   does not change once the query is given, AS upper 

bound is anti-monotone with regard to S(v). That is, for any 

set S(v)∈ S(v'), if UB(S(u'),S(v)) < τ, then UB(S(u),S(v')) < τ. 

3.2.1.2 Pruning Techniques 

3.2.1.2.1 Anti-Monotone Pruning 
Given a query vertex u, for each accessed frequent pattern P 

in the inverted pattern lattice, if UB(S(u),P) < τ, all vertices in 

the inverted list L(P) and L(P') can be safely pruned, where P' 

is a descendant node of P in the lattice. 
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Fig 1: Framework for subgraphs extraction (query processing in a distributed system) 

3.2.1.2.2 Vertical Pruning 
Vertical pruning is based on the prefix filtering principle [18]. 

 Given a query set S(u) and a frequent pattern P in the lattice, 

if P is not a one-frequent pattern (or its descendant) in S(u)’s 

p-prefix, all vertices in the inverted list L(P) can be safely 

pruned. 

p-prefix of S(u) is calculated as: 

Whenever we remove the element with the largest weight 

from S(u), we check whether the remaining set S'(u) meets the 

similarity threshold with S(u). ǁS(u)ǁ =       ∈       . 

If ǁS'(u)ǁ < τ×ǁS(u)ǁ , the removal stops. The value of p is 

equal to |S'(u)|-1, where |S'(u)| is the number of elements in 

S'(u) 

3.2.1.2.3 Horizontal Pruning 
We find LU(u) (length upper bound) by adding elements in 

(U-S(u)) to S(u) in an increasing order of their weights. Each 

time an element is added, a new set S'(u) is formed. We 

calculate the similarity value between S(u) and S'(u). If 

sim(S(u),S'(u)) ≥τ holds, we continue to add elements to S'(u). 

Otherwise, the upper bound LU(u) equals to |S'(u)|-1. 

All frequent patterns under Level LU(u) will be pruned. 

3.2.2 Structure Based Pruning 

A matching subgraph should not only have its vertices 

(element sets) similar to corresponding query vertices, but  

also preserve the same structure as Q. We design lightweight 

signatures for both query vertices and data vertices to further 

filter the candidates after set similarity pruning by structural 

constraints. 

3.2.2.1 Structural signatures 

Two structural signatures are defined - query signature 

Sig(u),data signature Sig(v) ,  for each query vertex u and data 

vertex v, respectively.  

To encode structural information – 

 Sig(u)=Sig(v) should contain the element information of both 

u=v and its surrounding vertices. 

Procedure: 

•First sort elements in element sets S(u) and S(v) according to 

a predefined order 

•Based on the sorted sets, we encode the element set S(u) by a 

bit vector, denoted by BV(u), for the former part of Sig(u).  

•Each position BV(u)[i] in the vector corresponds to one 

element ai , where 1≤ i ≤ |U| and |U| is the total number of 

elements in the universe U. If an element aj belongs to set 

S(u), then in bit vector BV(u), we have BV(u)[j]=1, otherwise  

BV(u)[j]=0 holds.  

•Similarly, S(v) is also encoded using the above technique. 

•For the latter part of Sig(u) and Sig(v) (i.e., encoding 

surrounding vertices), we propose two different encoding 

techniques for Sig(u) and Sig(v), respectively. 

For Query Signature: Suppose a vertex u is given with m 

adjacent neighbor vertices ui ( i=1,...,m) in a query graph Q, 

the query signature Sig(u) of vertex u is given by a set of bit 
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vectors, that is, Sig(u)={BV(u),BV(u1),...,BV(um)}, where 

BV(u) and BV(ui) are the bit vectors that encode elements in 

set S(u) and S(ui), respectively.  

For Data Signature: Suppos a vertex v is given with n adjacent 

neighbor vertices vi (i =1,..,n) in a data graph G, the data 

signature, Sig(v), of vertex v is given by: Sig(v)= 

[BV(v),V          
 

 ], where v is a bitwise OR operator, 

BV(v) is the bit vector associated with v, V          
 

  is 

called a union bit vector, which equals to bitwise-OR over all 

bit vectors of v’s one-hop neighbors. 

3.2.2.2 Signature Based DHT(Distributed 

Hash Table) 

To enable efficient pruning based on structural information, 

we use Distributed Hash Table to hash each data signature 

Sig(v) into a signature bucket. 

3.2.2.3 Structural Pruning 

Finding Similarity using Jaccard Similarity- 

Given : Bit vectors BV(u) and BV(v) 

To Find :similarity between BV(u) and BV(v) 

sim(BV(u),BV(v))=  
      ∈           

      ∈           
 

where ˄ is a bitwise AND operator and ˅ is a bitwise OR 

operator, a∈ (BV(u) ˄ BV(v)) means the bit corresponding to 

element a is 1, W(a) is the assigned weight of a.  

For each BV(ui), we need to determine whether there exists a 

BV(vj) so that sim(BV(ui),BV(vj)) ≥τ  holds.  

3.2.3 Dominating Set-based Subgraphs 

Matching 

An efficient dominating-set-based subgraph matching 

algorithm (denoted by DS-Match) facilitated by a dominating 

set selection method is proposed. 

3.2.3.1 DS-Match Algorithm(for the 

distributed systems) 

It first finds matches of a dominating query graph (DQG) QD 

formed by the vertices in dominating set DS(Q), then verifies 

whether each match of QD can be extended as a match of Q. 

By using DS-match algorithm, we can save filtering cost by 

only finding candidate vertices for dominating vertices rather 

than all vertices in Q and we can speed up subgraph matching 

by only finding matches of dominating query vertices 

Dominating Set : 

 Let Q = (V,E) be a undirected, simple graph without loops, 

where V is the set of vertices and E is the set of edges. A set 

DS(Q) ⊆ V is called a dominating set for Q if every vertex of 

Q is either in DS(Q), or adjacent to some vertex in DS(Q). 

 In order to transform a query graph Q to a dominating query 

graph QD, we first find a dominating set DS(Q) of Q. Then for 

each pair of vertices ui,uj in DS(Q), we determine whether 

there is an edge (ui,uj) between them and the weight of (ui,uj). 

To find matches of dominating query graph, we propose the 

distance preservation principle is used. 

 

3.2.3.2 Dominating Set Selection 
A query graph may have multiple dominating sets, leading to 

different performance of SMS2 query processing. Thus, a 

cost-efficient dominating set is found using a Minimum 

Dominating Set (MDS) problem[2]. 

4. EXPERIMENTAL RESULTS 
The modules which were discussed in the proposed paper 

design model are implemented in the distributed system.  

The focus of this implementation is on efficiency and time.  

4.1 Datasets 
Both synthetic as well as real datasets have been used to 

evaluate the framework. The real dataset used is flight dataset 

flight data of approximately 4,00,000 nodes wherein average 

number of elements of each node is 5( source station , 

destination station, take_off time, landing_time, duration etc.) 

and min threshold is set to 0.8 

4.2 Experimental Setup 
All the experiments are carried out on the operating system : 

Ubuntu 14.04 using Scala Language and the development 

environment used is Apache Spark 1.6.0. 

Observations : 

For the data graph of approximately 4,00,000 nodes, each 

node having  average number of elements of each node is 5 

and min threshold is set to 0.8, 100 query graphs have been 

extracted by starting from any random vertex 

 The query response time for subgraph extraction in a large 

graph database implemented with the centralized approach is 

approx. 200 sec, while the query response time for the 

distributed system is less than 170 sec. 

5. CONCLUSION 
In this paper, a distributed algorithm is proposed for 

subgraphs extraction in a large graph database in a distributed 

system by considering both vertex set similarity and graph 

topology using Apache Spark which produces the same result 

as the centralized system but speeds up the process by a 

considerable amount (since the application can run 

simultaneously) and also redundancy increases availability 

when parts of a system fail. As followed from our 

experiments, our distributed approach performs the same 

processes in a lesser time with a greater flexibility and 

scalability (through addition of components). The solution 

devised can be combined easily with any type of application 

such as social networks, Semantic Web, biological networks 

and it will undoubtedly boost the performance since the 

methodology carries out parallel processing. One of the 

applications can be a chatting application wherein a query is 

asked and the relevant response is desired. It can also be used 

in any search engine that can use formulas more sophisticated 

than words and for security purposes like in fingerprints 

scanners, facial scanners, retina scanners and so on. Also, any 

system that performs clustering would benefit from this fast 

algorithms. 

6. REFERENCES 
[1]  Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient 

subgraph matching on billion node graphs,” Proc. VLDB 

Endowment, vol. 5, no. 9, pp. 788–799, 2012. 

[2]  P. Zhao and J. Han, “On graph query optimization in 

large networks,” Proc. VLDB Endowment, vol. 3, nos. 

1/2, pp. 340–351, 2010. 



International Journal of Computer Applications (0975 – 8887) 

Volume 175 – No.5, October 2017 

5 

[3]  L. Zou, L. Chen, and M. T. Ozsu, “Distance-join: Pattern 

match query in a large graph database,” Proc. VLDB 

Endowment, vol. 2, no. 1, pp. 886–897, 2009. 

[4]  Y. Tian and J. M. Patel, “Tale: A tool for approximate 

large graph matching,” in Proc. 24th Int. Conf. Data 

Eng., 2008, pp. 963–972. 

[5]  H. He and A. K. Singh, “Closure-tree: An index structure 

for graph queries,” in Proc. 222nd Int. Conf. Data Eng., 

2006, p. 38. 

[6]  W.-S. Han, J. Lee, and J.-H. Lee, “Turboiso: Towards 

ultrafast and robust subgraph isomorphism search in 

large graph databases,” in Proc. ACM SIGMOD Int. 

Conf. Manage. Data, 2013, pp. 337–348. 

[7]  L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A 

(sub) graph isomorphism algorithm for matching large 

graphs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, 

no. 10, pp. 1367–1372, Oct. 2004. 

[8]  J. R. Ullmann, “An algorithm for subgraph 

isomorphism,” J. ACM, vol. 23, no. 1, pp. 31–42, 1976. 

[9]  S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Capturing 

topology in graph pattern matching,” Proc. VLDB 

Endowments, vol. 5, no. 4, pp. 310–321, 2012. 

[10] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan, “Nema: 

Fast graph search with label similarity,” in Proc. VLDB 

Endowment, vol. 6, no. 3, pp. 181–192, 2013. 

[11] Liang Hong, Member, IEEE, Lei Zou, Member, IEEE, 

Xiang Lian, Member, IEEE, and Philip S. Yu, Fellow, 

IEEE, "Subgraph Matching with Set Similarity in a 

Large Graph Database", IEEE TRANSACTIONS ON 

KNOWLEDGE AND DATA ENGINEERING, VOL. 

27, NO. 9, SEPTEMBER 2015 

 

IJCATM : www.ijcaonline.org 


