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ABSTRACT
Mobile devices limited storage and computation capabilities are
largely affected by the compute intensive, resource intensive or
energy drain applications. These limitations of the mobile de-
vices can be eliminated with the help of mobile cloud comput-
ing by delivering the energy drain or computing intensive parts
of the task to more resourceful resources and receiving the re-
sult from the resources. This process (a.k.a code offloading) helps
the mobile device to increase performance and reduce energy con-
sumption. We have proposed an optimal task scheduling code
offloading mechanism which optimally identify the remote ex-
ecutable tasks and also identify the remote VM to execute the
task. We have also proposed some greedy algorithms to evalu-
ate the result of our proposed task scheduling algorithm. Herein,
the local execution time, maximum allowable time and com-
munication latency information and scheduling a task based on
the remote VM execution time and queuing time etc. informa-
tion are served to the master cloud. In our experimentation, we
have used an image processing application to validate the pro-
posed system. From our evaluation we show that tasks executed
on high capacity VM improve the overall execution time com-
paring with local mobile device execution. It also shows that the
proposed mechanism for offloading task from mobile device to
remote resource perform efficiently for resource heterogeneity.

General Terms
Mobile device, offloading, scheduling.

Keywords
Mobile cloud computing, code offloading, migration, partitioning.

1. INTRODUCTION
The mobile user’s density and number of mobile devices in the
world are becoming high and mobile applications are gaining pop-
ularity in recent years. The increasing developments of that appli-
cations will revolutionize many sectors of our economy, includ-
ing business, health care, social networks, environmental monitor-
ing, and transportation, etc. Mobile devices (e.g., smartphone and
tablet PC) have become an important part in today’s life because
of its desktop like functionality [1]. Nowadays, it is the most ef-
fective and efficient communication tools which is not bounded

by time and place. Mobile applications executed locally or on re-
mote servers connected via wireless network providing rich expe-
riences of various services to mobile users. For the development of
IT technology, commerce, e-commerce, and industry fields, mobile
computing becomes a very powerful trend [2]. Having so many ad-
vantages, it faces so many challenges such as executing resource
intensive applications like image and video processing, object or
face recognition [3] decreases performance of the device. As it
is equipped with accelerometer, digital compass, gyroscope, GPS,
microphone, camera, and Wi-Fi, etc. requiring huge computation
in background of the devices which increases the complexity [4].
The limiting factor of mobile devices in their resources (e.g., bat-
tery life, storage, and bandwidth) [5] and communications (e.g.,
mobility and security) [6, 7] that hinder the improvement of ser-
vice quality. The limitations of the mobile devices can be mitigated
by migrating either the entire application or parts of it to remote
computing devices to gain benefits. Cloud computing takes these
responsibility for an application by offering infrastructures, plat-
forms and software at low cost. Cloud computing makes it possible
for users to effectively utilize resources in an on-demand basis. In
order to mitigate the limitations of mobile devices and mobile ap-
plications, Mobile Cloud Computing (MCC) [8, 9] is introduced
as an integration of cloud computing into the mobile environment.
MCC executes high computational or energy hungry applications
to the cloud which allows the mobile users to use the cloud as In-
frastructure as a Service (IAAS), Software as a Service (SAAS)
and Platform as a Service (PAAS) at low cost. The ultimate goal of
MCC is to enable execution of rich mobile applications on a huge
number of mobile devices, with an increased user experience. As
more computation are performed into the mobile devices, perfor-
mances demanded by smartphones is increasing at a much faster
rate than improvement in battery technology. To improve perfor-
mance and battery lifetime, the huge computation required appli-
cations can be executed on mobile devices by migrating computa-
tional tasks to nearby servers using MCC known as computation
offloading or code offloading. Traditionally, computations are of-
floaded to rich remote resources servers [10]. In code offloading,
the entire application or part of it is migrated to remote server for
performance improvement [11, 12], increasing the battery life [13]
and reducing the cost of execution. In code offloading, applica-
tions can be partitioned as methods, classes or threads statically
[14, 15] or dynamically [16, 17, 18, 19] considering variable pa-
rameters such as server workload, data rate, etc. This offloading to
remote cloud often leads much overhead such as high latency and
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low bandwidth as the real cloud provider may be located far away
from the user.
Considering those issues mentioned above, the objective of this re-
search is to optimally identify the remote virtual machine for of-
floadable task in mobile cloud computing which is a complex and
challenging task. It is required to optimally identify the remote VM
where the compute intensive task should be offloaded. The applica-
tions located in a mobile device have a maximum amount of time
to execute, maximum allowable time are served to the master cloud
profiler. Those information are used by the scheduler to optimally
select the remote virtual machine.

2. RELATED WORK
This section describes a brief discussion on the existing code of-
floading mechanisms.In code offloading, tasks can be method,
class, thread or data depending on the partitioning level. The state
of the art offloading mechanisms can be classified into two cate-
gories named partitioning based mechanism and scheduling based
offloading mechanism.

2.1 Task Partitioning Based Mechanisms
In code offloading, tasks can be method, class, thread or data and
that tasks are delivered to the remote server in order to increase
performance. The partitioned code are annotated to identify the lo-
cal and remoteable task at runtime. The decision of partitioning a
task can be static or dynamic. In static code partitioning, tasks are
partitioned statically by the expert developer. On the other hand,
dynamic partition of code partitioning the code dynamically con-
sidering variable parameters such as server workload, network con-
nectivity, etc.

2.1.1 MAUI. Cuervo et al. [20] proposed a fine grained code of-
floading system for saving energy of mobile devices in making
smartphones last longer with code offload called MAUI. MAUI
introduces both static and dynamic decision of method level par-
titioning. Initially the developers annotated the remote executable
methods as remoteable and locally executable methods as local.
The proposed system automatically identified the remoteable and
non-remoteable methods, and then automatically performed migra-
tion on application methods.

2.1.2 ThinkAir. Kosta et al. [21] proposed Thinkair that enables
the parallelization of method execution using multiple Virtual Ma-
chine (VM) images for the enhancement of performance and bat-
tery lifetime of mobile devices. It introduces method level parti-
tioning for code offloading and exploits the concept of smartphone
virtualization in the cloud. The proposed system focuses on the
elasticity and scalability of the cloud which increases the power
of mobile cloud computing by parallelizing method execution us-
ing different VMs.The system is evaluated on the N-queen puzzle,
face detection, virus scan, and image merger applications.

2.1.3 CloneCloud. Chun et al. [22] created CloneCloud which
have enabled mobile application to migrate thread to device clones
operating in a computational cloud. The system employs dynamic
profiling and static analysis to partition the mobile application in
order to optimize overall execution cost. Herein, the application is
partitioned, send it to the clone, execute the code and re-integrating
the migrated thread back to the mobile device. The selection of lo-
cal and remote execution of methods is taken by the optimization
solver. The purpose of the optimization solver is to deliver opti-
mal application methods to the cloud from the mobile devices. The

system has static analyzer for code offloading which require expe-
rienced domain experts. This paper consider limited environmen-
tal conditions and assume resources that are not available on the
cloud. The CloneCloud system is evaluated on the virus scanning,
image processing, and privacy preserving targeted advertising ap-
plications.
In task partitioning based mechanism, another research work Kemp
et al. [23] proposed an offloading framework for Android named
Cuckoo, including a runtime system, a resource manager applica-
tion for mobile device user and a programming model for develop-
ers. Gordon et al. [24] propose code offload by migrating execu-
tion transparently called COMET, a multithreaded application that
can be migrated freely between devices depending on the workload
and use distributed shared memory for offloading. Flores et al. [25]
proposed EMCO, where high computation required operations are
identified and partitioned at code level and offloaded for remote
processing. What computation to offload and how to structure the
parallelism across the mobile devices and cloud, Ra et al. [26] pro-
posed Odessa which dynamically makes offloading and data paral-
lelism decisions for mobile interactive perception applications.

2.2 Task Scheduling Based Mechanisms
The previously discussed works consider only the mobile devices
and the cloud for offloading code. But offloading code to distant re-
mote cloud often leads too much overhead like low bandwidth and
high latency as the actual cloud provider may be situated far away
from the users. Therefore, researchers have considered existence
of an intermediate server called master cloud attached to WiFi ac-
cess point for code offloading. Since the resource allocation on the
cloud is of immense importance due to the increasing quality of
experience of the users, researchers are giving attention to address
the issue of where to optimally offload a task for remote execution.

2.2.1 MAPCloud. MAPCloud [27] has proposed a two-tier cloud
architecture with multiple quality of service factors like price,
power and delay. To achieve a near optimal solution for allocating
the task to a resource in the cloud, they proposed CRAM (Cloud
Resource Allocation for Mobile Applications), a simulated anneal-
ing based heuristic. Herein, tier 1 consists of scalable and elastic
public cloud like Amazon Web Services, Google Application En-
gine etc. This tier does not give the fine grain location granular-
ity. That is why, the second tier consists of the local cloud where
resources are connected to the access point. The fine grain loca-
tion information of these resources is available. The middleware
broker, located at the second tier of the architecture, manages and
runs applications on this system. The broker has a registry of avail-
able resources and services at both tiers of the cloud. To determine
whether the task is schedulable or not, the broker consults the reg-
istry for each application request which are considered as a work-
flow of task.

2.2.2 Online Algorithms for Location-Aware Task Offloading.
Q. Xia et al. [28] have considered the user access limitation on the
wireless network access points. The main objective of this solution
is to determine the place of offloading the task with an aim to
maximize the minimum residual energy ratio. Tier 1 includes the
public cloud and tier 2 includes the local cloudlets. To select the
server from the clouds, the authors have constructed a bipartite
graph whose one set of vertices is the task at a time slot and the
other set is the possible computing facility allocation. The edge
between each node is the delay for executing the task in respective
computing facility. The weight associated with each node is the
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Fig. 1: High level design for the proposed system

energy cost calculated through the proposed energy cost model.

3. PROPOSED OPTIMAL TASK SCHEDULING
MECHANISM

Different approaches are present in the current MCC literature for
migrating task to the cloud from mobile devices. Most of these suf-
fer from some drawbacks as depicted in the previous chapter. In this
chapter, we describe our proposed system for task scheduling to the
VM on cloud from the mobile devices. At first, we have depicted
the architecture of our proposed system. The problem statement
with an example scenario is narrated next. Finally, we formulate a
mathematical model to select the VM from the cloud to execute the
task.

3.1 System Architecture
The system follows the client-server architecture like several state-
of-the-art cloud computing framework [3]. At mobile side, applica-
tions are running and selected offloadable methods are executed to
the remote server based on the master cloud profiling information
such as remote VM execution time and queuing time. Herein, the
mobile devices need to contain very small amount of information
in order to increase the battery lifetime of the mobile device. The
responsibility of taking offloading decision is shifted to the cloud.
Fig 1. presents an overview of its architecture and contains the fol-
lowing components.

3.1.1 Mobile Device. Herein, the core application runs on to the
mobile device. There can be multiple mobile devices in our as-
sumed scenario and each device have some offloadable tasks. In
the mobile device, it has local execution time (LEC) and user de-
fined maximum allowable time (MAT) for each methods. For each
offloadable methods, it has also communication latency. In our sce-
nario, we assume that local execution time, maximum allowable
time and communication latency are sent to the local cloud master
for selecting optimal remote VM. The informations are received by
the local master cloud and the master cloud has the responsibility
to select optimal VM.

3.1.2 Master Cloud. The master cloud take the remote VM’s
execution time and average queuing time for processing a task.
Herein, we assume that mobile device send each task’s local execu-
tion time (LEC), maximum allowable time (MAT) and communica-
tion latency information to the master cloud. Then, the master cloud
select optimal remote VM for executing the offloadable task. The
informations collected form the mobile device and remote VM are
periodically collected and stored. The master cloud is composed of
two main components namely profiler and scheduler. The functions

of these are narrated below. Profiler The profiler stores the profil-
ing information of tasks which are used by the scheduler in order to
optimally identify remote VM. The profiler stores VM’s execution
time and queuing time information. The profiler also stores mobile
devices LEC, MAT and communication latencies provided by the
mobile device. All these information are used by the scheduler to
select the optimal remote VM in order to increase performance of
the mobile device. When the same or similar task is executed, the
proposed system used the previous stored information. Any wrong
measurements may force the proposed system to make wrong de-
cision of selection. The informations stored in the profiler from
mobile device and remote resource are used by the scheduler. As
selection of the optimal remote VM is an optimization problem,
so scheduler solve the mathematical model for selecting remote re-
source. The model of the optimization problem uses all the profiler
information and identify the optimal remote VM. The scheduler
invokes the objective function to determine the optimal scheduling
for executing offloadable task.

3.1.3 Virtual Machine. The remote resources are responsible for
executing the offloadable tasks decided by the master cloud. The
master cloud uses remote VM’s execution time and queuing time
information for selecting optimal VM. After selecting the optimal
remote resource, the mobile device offloadable tasks are delivered
to the selectable VM via the master cloud and return the results
back to the mobile device. In order to schedule to an optimal re-
mote VM, we need to have some tasks on to the proposed master
cloud. The master cloud then decide which VM is optimal for ex-
ecuting the tasks considering the VM execution time and average
queuing time. In our scenario, we assume that we have some tasks
for executing to the VM in the master cloud. For partitioning and
delivering the tasks to the master cloud, we use the MpOS: A Mul-
tiplatform Offloading System [17] framework. For supporting the
code offloading mechanism, the framework partitioned the applica-
tion into methods level. Therefore, some methods are always exe-
cuted locally and developers need to annotate [?, 18] these methods
for executing locally. Locally executable methods have the follow-
ing properties [19, 20, 21]:

(1) Methods that use mobile device specific hardware such as sen-
sors, camera.

(2) Methods that create user interface of the application.
(3) Methods that executed sensible data where re-execution ham-

per the actual results.

The local and remote executable methods are annotated as @Lo-
calTask and @RemoteTask wherein methods that are locally an-
notated are always executed locally but remote annotated methods
can be executed either locally or remotely depending on variable
parameters.

3.2 Optimal Task Allocation
The task allocation to remote resources on the cloud should be an
optimal one so that the quality of experience of the users can be
enhanced. The major factors impacting this decision are the com-
munication latency from the mobile to the cloud, network incon-
sistency, and queuing time to the VM and resource heterogeneity.
In this section, we describe our proposed optimal task allocation
model. As selection of optimal remote resource is an optimization
problem, no polynomial time solution can be found for this prob-
lem.

3.2.1 Problem Statement. The execution of computational ex-
pensive to remote virtual machines has become a rising problem
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[18, 19]. In this situation for mitigating the problem, it is required
to use distributed computing resources for the compute intensive
tasks. Mobile cloud computing can be a solution, but in that case
the entire application execution is needed to be done in the cloud.
However, it is not feasible as the computational time and cost are
increased. Therefore, it is required to partition the application and
identify the optimal remote resource for executing the task. In our
case, we have assumed that application codes are already parti-
tioned and sent to the master cloud. The task allocation problem
for mobile cloud computing consists of a set of remote resources
which may be a public server, master cloud or VM’s and a set of
tasks that has to be offloaded to the remote resource. The remote
resource has different configuration and different queuing time. We
assume that the communication latency for sending and receiving
offloadable data, local execution and maximal allowable time for
a tasks are known to the master cloud beforehand. We have to se-
lect a optimal VM from different type of VM in order to offload
tasks considering the VM’s execution and queuing time. For this
reason, we need to minimize the execution time and queuing time
of a VM for a task in order to increase performance. One task can
be allocated to only one server from the set of remote resources is
prerequisite for each tasks.

3.2.2 Mathematical Model for Task Allocation. The problem of
selecting the optimal remote computing virtual machine to execute
a task from mobile device is a challenging task because multiple
variable parameters associated with this. The Quality of Service
(QoS) of application enforces a prerequisite to execute the task
within the maximum allowable time. Mobile devices have local ex-
ecution time and communication latency C known by the master
cloud. As there are different types of VM and different queuing
time, one task takes different time to execute and having different
queuing time on different VM. To enhance the quality of experi-
ence of the users, the response time of the tasks should be kept as
minimum as possible. The execution time and queuing time of the
VM has a great impact to execute a task. For this reason, the exe-
cution time and queuing time of the VMs should be minimum.
Calculation of Queuing Time
In our scenario, we assume that the master cloud has some offload-
able task and need to select optimal VM for executing the task. The
proposed system considers the heterogeneity of the remote VM.
We also consider that each VM has a task queue for incoming task.
The VM receives tasks and departure only one at any given time
stamp and it can be modeled as M/M/1 queuing model. For calcu-
lating the average queuing time, we use the exponential weighted
moving average (EWMA). The average queuing time is calculated
using the following equation [29].

Qi
avr = (1− α) ∗Qi−1

avr + α ∗Qi
curr (1)

Calculation of Communication Latency and Execution Time
In offloading, compute intensive tasks transfer a large amount of
data to the master cloud and the result has received back to the mo-
bile device from the master cloud. Herein we assume that transfer-
ring and receiving time of offloadable tasks from the mobile cloud
to selectable VM is very small because remote resources have high
computation power. The communication latency is the sum of the
transferring and receiving time of offloadable tasks. The transfer-
ring and receiving time vary based on the signal strength between
mobile device and access point and different signal strength uses
different date rate for sending and receiving data.
Herein, the value of transferring and receiving time is greatly af-
fected by the received signal strength indicator called RSSI value.
When the RSSI value from the access point to which mobile de-

vices are connected is high then the achievable data rate for the
connection would be high. As a result, the time to send and receive
application data will be low and vise versa. Mobile device’s ith task
communication latency is represented as

Ci = tai + tri (2)

Let, a be the amount of data bits to be sent and r be the amount of
received data for an application having instruction count, I . D be
the achievable data rate of the mobile device for an access point
attached to the remote server.

Suppose we have a set of T tasks in an application. Also suppose
that we have a set of V VM’s. In mobile device, there are local exe-
cution time and maximum allowable time for each methods which
are represented as φ and τ respectively. Let we have communica-
tion latency, C for each task and a execution time of VM, E for
each task assignment. The remote executable VM has a average
queuing time, Q. The following objective function select a optimal
VM from a set of VM where both execution time and queuing time
are minimized where i denotes the tasks to be offloaded to the cloud
and j denotes the remote executable VM.
Herein,
Eij =Execution time of ith task to jth VM
Qj = Average queuing time to jth VM
Ci =Communication latency for ith tasks which is specially,
Ci = tai + tri
tai = Time to transfer a task of size a
trij = Time to receive a task of size r
τi = Maximum allowable time of ith task
φi = Local execution time of ith task on mobile device
Let,

xij =

{
1, Mi task is assigned to Sj server.
0, otherwise

The research problem can be presented as the following formula.
min

∑
ij(Eijxij +Qjxij)

s.t.
Ci +

∑
j(Eij +Qjxij) ≤ τi ∀i∑

j xij = 1 ∀i

where
xij ∈ {0, 1} ∀i, j
Ci, τi, φi ∈ R+ ∀i
Eij , Qj ∈ R+ ∀i, j

Here, the objective is to minimize the execution time and queuing
time of ith task to jth VM which is formulated as a single objective
integer linear programing problem.
Herein, we assume that mobile devices communication latency, lo-
cal execution time and maximum allowable time are sent to the
master cloud profiler. The profiler in the master cloud uses these
information to select remote executable VM for a task. The sched-
uler of the master cloud solves the optimization problem to identify
the VM for a task. It is not possible to use polynomial time algo-
rithm to find an exact solution to the problem for a real time large
size applications. Therefore we will try to estimate greedy algo-
rithm having complexity O(n) or O(logn).

4



International Journal of Computer Applications (0975 - 8887)
Volume 175 - No.6, October 2017

3.3 Proposed Greedy Algorithms
The research describes three different greedy algorithm task allo-
cation based on random selection, task allocation based on lowest
capacity, task allocation based on highest capacity. Herein, Algo-
rithm 1 present a variation of Monte Carlo Methods that have been
applied and algorithms 2 and 3 present greedy based algorithms
that have been applied. The algorithms are used to find total time
for scheduling a task to optimal remote VM.

3.4 Random Selection of Servers
The objective of Algorithm 1 is to assign a task to randomly se-
lectable VM from a set of VM such that each task is assigned to
exactly one VM. The algorithm takes a set of VMs, set of tasks,
communication latency, execution time and queuing time of tasks
as input and provide the total time as output. Herein, steps (3-6)
generate a random number from 1 to the total number of VM type,
k and assign that task, t to randomly selectable VM. In step 7, to-
tal time variable, λ initialized as zero. Next steps (8-14) derive the
value of λ for all tasks.

Algorithm 1: Task Allocation Based on Random Selection
Input : Set of VM V , Set of tasks T , communication latency C,

execution time E, queuing time Q, number of VM type k,
maximum allowable time τ

Output: totalTime λ
1 Begin;
2 We have set of servers, V = {V1, V2, ..., Vk};
3 for each m ∈ T do
4 generates a random number , i ∈ {1, k} ;
5 Vi ← Vi ∪ {m};
6 end
7 λ← ∅ ;
8 for each Vi ∈ V do
9 for each m ∈ T do

10 if (C[m] +E[Vi,m] +Q[Vi]) ≤ τ then
11 λ+ = E[Vi,m] +Q[Vi] ;
12 end
13 end
14 end

Output: totalTime, λ

3.5 Task Allocation Based on Lowest Execution Time
In Algorithm 2, tasks are first assigned to the VM having minimum
execution time with the constraint that each task is assigned to ex-
actly one server. Set of VMs, tasks, communication latency, execu-
tion and queuing time of tasks served as input to the algorithm and
provide the total time as output. In step 2, δ describes different type
of k VM. In steps (3-5), each task is assigned to the remote VM
by master cloud having minimum δ value until all tasks assignment
are completed. Total time variable, λ initializes to zero in step 6.
Next steps (7-11) calculates the value of λ for all tasks.

3.6 Task Allocation Based on Average Queuing Time
Algorithm 3 task is to assigned tasks to VM having lowest queuing
time with the constraint that each tasks are assigned to exactly one
VM. The algorithm takes set of VM, set of task, communication
latency, maximum allowable time, queuing and execution time of

Algorithm 2: Task Allocation Based on Lowest Execution Time
Input : Set of VM V , Set of tasks T , communication latency C,

execution time E, queuing time Q, number of VM type k
Output: totalTime λ

1 Begin;
2 δ ← δ1, δ2, δ3....δk is the different type of VM, Vi, i ∈ {1, k} ;
3 for each m ∈ T do
4 Assign t ∈ T to VM Vi where δi is lowest execution time; ;
5 end
6 λ← ∅ ;
7 for each Vi ∈ V do
8 for each m ∈ T do
9 λ+ = E[Vi,m] +Q[Vi] ;

10 end
11 end

Output: totalTime λ

tasks from environment as input and provide the total time as out-
put. In step 2, δ describes the different type of k VM. In steps (3-5),
each task is assigned to the remote server having minimum value
of δ until all task assignment is completed. Step 6 initialized the
total time variable, λ to zero. Next steps (7-13) calculates the value
of λ for all tasks where total time must be within the maximum
allowable time.

Algorithm 3: Task Allocation Based on Average Queuing Time
Input : Set of VM V , Set of tasks T , communication latency C,

execution time E, queuing time Q, number of VM type k,
maximum allowable time τ

Output: totalTime λ
1 Begin;
2 δ ← δ1, δ2, δ3....δk is the different type of VM, Vi, i ∈ {1, k} ;
3 for each m ∈ T do
4 Assign m ∈ T to VM Vi where δi is average queuing time; ;
5 end
6 λ← ∅ ;
7 for each Vi ∈ V do
8 for each m ∈ T do
9 if (C[m] +E[Vi,m] +Q[Vi]) ≤ τ then

10 λ+ = E[Vi,m] +Q[Vi] ;
11 end
12 end
13 end

Output: totalTime, T

4. PERFORMANCE EVALUATION
Offloading makes the mobile devices possible to execute tasks re-
motely and improve their performance. It highlights the detail per-
formance evaluation of our proposed greedy algorithms. Initially,
the experimental environment is illustrated. Next, the results of the
experiments are highlighted to evaluate the proposed algorithms.

4.1 Environment Setup
The experimental environment set up for this experiment is com-
posed of one mobile devices supporting android platform and four
laptops of different models VM. The detailed device specification
for the experimental environment is listed in Table 1. During execu-
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Table 1. : Device Specifications

Equipment Specification

Mobile Device
Android KitKat Sony Xperia C3
Dual, Qualcomm MSM8926 Snapdragon 400,
Quad-core 1.2 GHz Cortex-A7, 1 GB RAM

VM1
Windows 7 64 bit, Quad Core,
1.2 GHz and 1GB RAM

VM2
Windows 7 64 bit, Intel Core i3-4010U,
3 cores, 1.70 GHz and 2GB RAM

VM3
Windows 8.1 Pro 64 bit, Intel Core i5-3450U,
5 cores, 3.10 GHz and 4GB RAM

VM4
Windows 8.1 Pro 64-bits, Intel Core i7-5500,
7 cores, 2.40 GHz and 8GB RAM

tion of the experiments, the tasks are executed on the mobile device
first to determine the local execution time. The users of the applica-
tion are defined the maximum allowable time for each of the tasks.
The local execution and maximum allowable time for each task are
displayed in Table 2(a). In our scenario, we assume that the local
execution and user defined maximum allowable time information
are served to the master cloud and it uses these information for se-
lecting optimal remote resource.

4.2 Execution Time and Task Assignment
In order to calculate the value of the proposed mathematical model
objective function value, execution time of each task, communica-
tion latency for offloadable task and assignment of tasks to remote
resources are required.

4.2.1 Task Execution Time. In task offloading, a tasks can be exe-
cuted either local mobile device or any other remote resources. The
decision of selecting remote resources for executing the offloadable
task is taken by the master cloud. As we consider the resource het-
erogeneity, so a task has different execution time and queuing time.
Our objective is to minimize the execution and queuing time of a
task. The execution time for each task on different VM is displayed
in Table 3 and average queuing time is displayed in Table 4. For
calculating the average queuing time we use exponential weighted
moving average. Herein, one task complete at a given time stamp
from the queue. In this assumption we model the queue as M/M/1
queuing model.

Table 2. : Local Execution and Com Latency

(a) Local Execution and Maxi-
mum Allowable Time of Tasks

Task
Local
Execution
Time

Maximum
Allowable
Time

m1 16.654 13.323
m2 18.662 14.93
m3 29.203 23.362
m4 23.974 19.179
m5 31.75 25.4
m6 32.443 25.954

(b) Communication Latency for
Task

Task Transfer Receive
Com
Lat
ency

m1 1.01 0.49 1.5
m2 0.92 0.67 1.59
m3 1.06 0.71 1.77
m4 1.12 0.79 1.91
m5 0.65 0.44 1.09
m6 0.74 0.58 1.32

4.2.2 Communication Latency. Mobile devices are attested to a
particular access point and getting a particular signal strength. For
each signal strength, there are fixed data rate for sending and re-
ceiving data. In 802.11a2 there are different data rates. In our sce-
nario, transferring and receiving time considered as communication
latency and assume that the master cloud has the communication la-
tency information. Table 2(b) displays the communication latency
for each of the task which are served to the local cloud master.

4.2.3 Task Assignment. In the proposed mathematical model, xij
is used to identify which tasks are executed to which remote re-
source. The value for the variable is either 1 if task is remotely ex-
ecutable or 0 if locally executable. The assumption for the variable
is that for each task, the summation of all remote VM assignments
is equal to 1 because a task can be assigned and executed only once
to remote VM. The assignment can be different based on the dif-
ferent algorithm type. V 1 , V 2, V 3 and V 4 represent the different
type of VM having different configuration. Task allocation based
on random selection of VM used Monte Carlo (MC) approaches.
In MC approaches, Random number for each tasks are generated
for 1 million times and best possible assignment is used for that
task.
In task allocation based on random selection of VM assignment,
tasks are randomly assigned to remote VMs having different exe-
cution and queuing time as follows:

(1) m1→ V 3

(2) m2→ V 4

(3) m3→ V 3

(4) m4,m5→ V 1

(5) m6→ V 2

In task allocation based on lowest execution time, all tasks are al-
ways executed to the VM having lower execution time and these
assignments are:

(1) {m1,m3,m4,m6} → V 4

(2) {m2,m5} → V 2

In task allocation based on average queuing time of VM, task as-
signments are:

(1) {m1,m2,m3,m4,m5,m6} → V 4

4.3 Evaluation
Let, suppose there are six methods in an application and four VM
having different execution and queuing time. The research pro-
posed three different greedy algorithms to validate our proposed
mathematical model. The algorithms uses three different assign-
ment of tasks to the remote VM. This section presents all those
algorithms objective value for three different assignments. For ex-
ample, supposem1 is assigned to V 4 server in random assignment.
Let the objective value be, 0*5.231 + 0*3.126 + 1*1.356 + 0*0.763
+ 11.118 that means for m1 task V 3 execution and queuing time
will be the total objective value. Only the VM execution time for
each task is displayed in Table 3. For all such tasks and remote
resources execution and queuing time are displayed in Table 5.

4.4 Discussion And Findings
To identify which context of remote resources and what network
context mostly affected the offloading operation, we proposed a
mathematical model to take the decision on scheduling. As iden-
tify the optimal remote resources for scheduling the tasks required
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Table 3. : Execution Time for Each Task

Task VM1 VM2 VM3 VM4
m1 5.231 3.126 1.356 0.763
m2 5.268 3.589 1.795 0.843
m3 11.128 8.689 5.37 1.132
m4 10.625 6.354 2.069 0.71
m5 15.269 8.457 4.787 1.25
m6 19.263 12.758 6.856 1.921

Table 4. : Average Queuing Time

Task VM1 VM2 VM3 VM4
m1 5.31 3.26 1.56 0.63
m2 5.23 3.13 1.36 0.76
m3 5.27 3.59 1.79 0.84
m4 11.12 8.68 5.36 1.13
m5 10.63 6.36 2.08 0.71
m6 15.26 8.45 4.78 1.25

Table 5. : Total Execution and Queuing Time For The Proposed greedy
Algorithms

Task
Task Allocation
Based on Lowest
Execution Time

Random
Assignment
of Tasks

Task Allocation
Based on Average
Queuing Time

Local Exe

m1 1.39 2.92 1.39 16.654
m2 3.16 1.6 1.6 18.662
m3 1.97 7.16 1.97 29.203
m4 1.84 21.75 1.84 23.974
m5 6.87 25.9 1.96 31.75
m6 3.17 21.21 3.17 32.443
Obj
Value

18.4 80.54 11.93 152.686

real time decision. As a result, three different greedy algorithms
are proposed and their objective value from the proposed model
are derived. For all those algorithms, assignment to high capacity
VM result is better than any other assignments. The algorithm also
shows better result than local execution time and maximum allow-
able time for all tasks.
Fig 2(a) shows the comparison of all tasks based on the execu-
tion time on different VM. Fig 2(b) considers not only the execu-
tion time but also consider the queuing time of the VM. The result
shows that queuing time largely affected the overall result. The pro-
posed greedy algorithm result comparison is displayed in Fig 2(c).
From our evaluation, we found that higher capacity VM has less
queuing delay and minimizes the task execution time. The result is
compared with the local assignment in Fig 2(d). If remote execution
save the execution time from the local execution, then the remote
execution is beneficial which is shown from our result.

5. CONCLUSION AND FUTURE WORK
The research addressed the issue of selecting optimal resource on
cloud for remotely executing the compute intensive tasks from the
mobile device. In order to select the resources in an optimal way, it
has formulated a mathematical model and analyzed to select the
remote executable tasks. The proposed system architecture con-
sists of mobile device, local master cloud and the remote virtual
machine. In the mobile device, we assume that communication la-

tency, local execution and maximum allowable time information
which are available to the master cloud before taking the schedul-
ing decision. The master cloud stores the remote VM execution
time and queuing time information and solves the proposed model
to take scheduling decision. It also presents three greedy algorithms
to validate the proposed mathematical model. The proposed sys-
tem does not take into consideration the mobility of the mobile de-
vices and security issues like authentication while performing the
offloading operation is the future work.
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