
International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.6, October 2017

9

Fault Tolerance using Adaptive Checkpoint in Cloud–An

Approach

J. M. Nandhini
Research Scholar, Anna University

Assistant Professor, Sri Sai Ram Institute of
Technology, Chennai

T. Gnanasekaran, PhD
Professor, Department of IT
RMK Institutions, Chennai

ABSTRACT
Cloud computing provides platform for improving the

flexibility in designing applications through exploiting the

different layers of virtualization. Cloud computing is a new

technology used for large scale enterprise applications. Cloud

computing provides platform for improving the flexibility in

designing applications through exploiting the different layers of

virtualization The requirements of the business processes are

met in the cloud computing. Cloud computing provides very

high scalability, reconfigurable resources and higher

availability of the resources. A robust Fault Tolerance strategy

is a very critical component of cloud computing to meet the

Service Level Objectives in cloud. High level of cloud

serviceability is achievable through fault tolerance. The widely

used strategies of fault tolerance are Checkpointing and

Replication. In this paper an overview has been provided on

various techniques of fault tolerance, dimensional view

Checkpoint classification and a dynamically adaptive

checkpointing model has beed proposed.

Keywords

Cloud computing, Fault Tolerance, Checkpoint , Virtual

Machine

1. INTRODUCTION
Cloud computing is a computing paradigm, which has a

large pool of systems that refers to logical computational

resources accessible via a computer network. Cloud computing

relies on sharing of various resources such as networks,

servers, storage, applications, and services to achieve

coherence, scalability, economies of scale, and maximizes the

effectiveness and utilization of the resources. According to

NIST Cloud computing is a model for enabling convenient, on-

demand network access to a shared pool of configurable

computing resources that can be rapidly provisioned and

released with minimal management effort or service provider

interaction.

Fault-tolerance includes all the techniques necessary for

robustness and dependability for cloud resources. The fault

tolerance helps in addressing the QOS requirements in terms of

process failure, processor failure and network failures. In the

absence of fault tolerance, the system encounters problems

such as job/resource failure, violation of deadlines and Service

Level Agreement (SLA) that leads to degraded QOS. System

Dependability can be measured to signify the level of fault

tolerance. Reliability and availability of the cloud resources are

the metrics to quantify dependability. Reliability symbolizes

the capability of a system to perform, on demand, its service

correctly. Availability denotes that the system is up to perform

this service when it is asked to do so. Fault Tolerance in cloud

enhances the performance standards, reduces cost and speeds

up the failure recovery.

The rest of the paper is organized as follows. Section II

highlights the significance of Fault Tolerance, Section III

summarizes Fault tolerance Techniques, Section IV describes

the dimensional view of checkpointing, Section V carries the

literature survey and Section VI consists of the proposed

checkpoint model.

2. IMPORTANCE OF FAULT

TOLERANCE
Fault tolerance [1] is the ability to preserve the delivery of

expected services despite the presence of fault that caused

errors within the system itself. The objective is to avoid failures

even in the presence of faults. In a very heterogeneous

computing environment, fault tolerance is critical to ensure

reliable performance. Errors are detected and corrected but

permanent faults are located and removed while the system

continues to deliver acceptable services.

The Service Level Objectives (SLOs) in clouds has the fault

tolerant service as an important component. A fault tolerant

strategy is required to attain a high level of SLO metrics [3].

Achieving reliability is important in Cloud, as most of the

systems are safety critical, this mandates the need for fault

tolerance.

Virtual Machines modelled on the cloud, groups and configures

various heterogeneous resources. This provides greater

flexibility in meeting the on-demand user request as and when

it is raised [4]. VM are prone to failure due to their

heterogeneity and longer usage. Failure in VM impacts badly

on scalability, performance, profit and the user satisfaction. To

avoid such impacts, Fault tolerance is a method to ensure

uninterrupted performance of the system, even during faults

[5]. Fault tolerance is a challenging research area in cloud

computing [6]. Large and complex infrastructure necessitates a

robust fault tolerance [2].

3. FAULT TOLERANCE TECHNIQUES
Based on work flow and task flow, Fault tolerance in cloud

computing can be classified into two categories. The Fault

Tolerance techniques are shown in Figure 1.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.6, October 2017

10

Fault Tolerance

Techniques

Proactive

Reactive

User Defined Exception Handling

Checkpoint

Replication

Job Migration

SGuard

Retry

Task Resubmission

Rescue Workflow

Software Rejuvenation

Self Healing

Preemptive Migration

Fig 1: Fault Tolerance Techniques

A. Reactive fault tolerance

Reactive fault tolerance eliminates the faults after it has

occurred. It minimizes the consequences of the failures on the

system, when the failure occurs. This can be implemented by

the following methods. [7].

 Checkpoint: In checkpoint method, the system can restart

from the latest checkpoint by minimizing the number of

re-computations involved from the previous failure.

 Replication: In replication method, the high prioritized

data are replicated at multiple appropriate locations so that

it can ease the user to access it from the close proximity of

the fault free site.

 Job Migration: A resource failure or machine failure

migrates the job to another VM machine where it resumes

its execution. HAProxy can be used for implementing this

method.

 SGuard: This method is based on rollback recovery.

HADOOP and Amazon Ec2 uses this approach.

 Retry: This is simplest technique. It entails resubmitting

the task on the same cloud resource.

 Task Resubmission: This approach is used when failed

task is submitted to the same VM or to another VMduring

runtime

 User defined exception handling: A workflow is

predefined for execution in the event of task failure.

 Rescue workflow: In spite of the failure the system

continues in its execution until it cannot proceed further

without rectifying the fault.

B. Proactive Fault Tolerance

Proactive fault tolerance calculates the possible occurrences of

faults in advance and averts the failures by substituting with

working components. This can be implemented by following

techniques

 Software Rejuvenation- It refers to the method of

restarting the application as a clean state. The rejuvenation

interval can also be defined periodically at various

intervals where the application can be restarted as a clean

interval state.

 Proactive Fault Tolerance using self-healing: This

technique is widely used in the cases where many

instances of a single application are running at different

VMs. If a fault happens in any of the systems, self-healing

automatically handles the failure in different VMs.

 Proactive Fault Tolerance using Preemptive Migration:

Preemptive Migration of an application to a different node

occurs when the current VM is about to fail.

4. DIMENSIONAL VIEW -

CLASSIFICATION OF CHECKPOINT
The process of taking a snapshot of the current state of the

running application on to a stable storage is called checkpoint.

This is the most commonly used method of fault tolerance.

When a fault is encountered the application can be restarted

from the latest checkpoint state. This reduces the re-

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.6, October 2017

11

computation time measurably. Checkpoint classification is

based on several attributes [8] is represented in Fig 2.

1. Abstraction Level

2. Message coordination

3. Checkpoint Initiator

4. Checkpoint Granularity

5. Checpoint Scope

6. Storage Space

Checkpoint

Dimensional View

Message Coordination

Abstraction Level

Checkpoint Initiator

Checkpoint Granularity

Checkpoint Scope

Storage Space

System Level Checkpoint

Application Level Checkpoint

Mixed Level Checkpoint

Uncordinated Checkpoint

Coordinated Checkpoint

Communication Induced

Checkpoint

Blocking Checkpoint

Nonblocking Checkpoint

Manual Code Inserttion

Pre-compiler Checkpointing

Post-compiler Checkpointing

Full Checkpointing

Incremental Checkpointing

Hybrid Checkpointing

Local Checkpoint

Global Checkpointing

Light Checkpoint

Heavy Checkpoint

Fig 2: Classification of Checkpoint

A. Abstraction Level

The level of abstraction at which the current state of the

application is saved is the criteria for classification. Under this

classification there are three types

1. System Level Checkpoint: Automatic and Transparent

check-pointing of applications at the operating system or

middleware level is provided using this method. This

mechanism has no knowledge about the characteristics of the

application. The complete process image of the application is

captured. It comprises of the attributes of process state such as

program counter, registers and memory saved on the stable

storage.

2 User or Application Level Checkpoint: Fault Tolerance is

achieved by the application within itself by providing self-

containing code. The application is designed in such a manner

that it restarts automatically using the information in the restart

file.

3. Mixed Level Checkpoint: It is the combination of System

Level Checkpoint and User Level Checkpoint.

B. Message Coordination:

The way the system manages the in-transit and orphan

messages is the criteria for this classification. Under this head,

the following are the types [9]

1. Asynchronous/ Uncoordinated Checkpoint: Each process

of the application takes the checkpoint independently without

coordinating with the other process. Lack of synchronization

makes the points inconsistent and during rollback, the points

have to be searched for consistent global checkpoint.

Merits:

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.6, October 2017

12

1. Control message exchange is avoided.

2. Process can perform checkpoint individually.

Demerits:

1. Possibility of Domino effect.

2. Many checkpoints for a process may lead to storage

overhead.

3. A process may take a checkpoint that need not ever

contribute to a consistent global checkpoint.

2. Synchronous/ Coordinated Checkpoint: In this approach,

the processes maintain the consistent global checkpoint. It

follows two phase commit. The tentative checkpoints taken in

the first phase are made permanent in the second phase. On

fault, the processes will roll back to the permanent checkpoint.

Merits:

1. Single permanent checkpoint lowers the stable storage

 overhead.

 2. Does not suffer from domino effect

 3. Simple rollback procedure

 Demerits:

 1. Involves exchange of multiple communication on

exchanging messages.

There are two types of coordinated check-pointing

1. Blocking Check-pointing: To prevent orphan messages,

the process remains blocked, until the entire check-

pointing activity is complete after taking a local

checkpoint. The process is allowed to resume its execution

as soon as it finishes its local checkpoint. The

disadvantage is the computation is blocked during the

check-pointing

2. Non-blocking Check-pointing: The in transit and orphan

messages may exist at the time of local checkpoint. The

processes need not stop their execution while taking

checkpoints. Preventing a process from receiving an

application message that would result in inconsistent

checkpoint in one of the issues encountered in this type.

3. Communication Induced/Hybrid/Quasi-synchronous

Checkpoint: This method enforces at the creation of

global checkpoint that is uncoordinated. The local

checkpoints are created independently. However, domino

effect is avoided by forcing additional checkpoints so as to

ensure the eventual progress of the global checkpoint.

5. RELATED WORK
In [3] a dynamic adaptive fault tolerance strategy called DAFT

is put forward. Two different fault tolerant strategies namely

check-pointing and data replication is proposed by analyzing

the mathematical relationship between different failure rates.

This dynamic adaptive strategy check-pointing and data

replication provides maximum serviceability there by ensures

the cloud Service Level Objectives. It is evaluated under

various conditions on metrics such as degree of fault tolerance,

overhead of fault tolerance and response time. The DAFT

strategy provides enhanced fault tolerance as conclusively

demonstrated by the outcome of the experiments.

In [10] existing strategies on check-pointing were analyzed and

compared to provide adequate work flow characteristics to the

cloud computing environment. A light weight check-pointing

model is proposed. A strong consistency is confirmed by the

strategy called Adaptive Time based Coordinated

Checkpointing (ATCCp). Checkpoint performance is improved

by VIOLIN topology and soft check-pointing minimizes

storage time. Checkpoint overhead and SLA violations are

greatly reduced are shown in experimental results.

A reactive fault tolerance technique is proposed in [11] using

check-pointing. The strategy called VM- μ Checkpoint

framework protects VMs against transient errors. CoW-PC

(Copy on Write – Presave in cache) algorithm is used. The

cache memory is used in saving the checkpoints of the tasks

running in the VMs in advance. In this algorithm in-memory

incremental checkpoints are taken so that restoration can be

done in-place. This greatly improves the efficiency of the

restoration process.

In [12] a scheme has been implemented that uses software

rejuvenation technique of fault tolerance. Two approaches have

been employed. An adaptive failure detection and aging degree

evaluation is done in the first stage which forecasts the cloud

services to be rejuvenated. The second stage comprises of a

component with applications. The designed architecture

consists of various cloud services that comprises tightly

coupled components and loosely coupled components

executing in different VMs.

In [13] to avoid delays in task completion, a price history based

check-pointing scheme based on SLA (Service Level

Agreement) is proposed. This is achieved by reducing the

number of checkpoints and there by improves the performance

of the tasks. Total cost and number of checkpoints are

effectively reduced in this scheme. A coordinator component in

this scheme supports and manages the SLA between users and

instances. The checkpoints are taken at two places. One at the

raising edge where the price exceeds the threshold and the

other is taken at the failure time foreseen by the average failure

time and failure possibility.

In [14], a FTM is proposed as a middle layer to handle VM

failures. Replication manager and Checkpoint managers are

implemented to help the Recovery Overseer component to take

preventive measures when a failed VM is detected by the Fault

Detector. The fault detector identifies the failed VM reviewing

the performance of the same tasks running at different

machines at the same time and identifying the VM that deviates

from the normal behavior. Replication Manager Component

determines the number and the type of replicas using MaxRe

algorithm. The saving of recovery information during

execution is done periodically by the Checkpoint Manager and

uses few resources when compare to replication. It uses

coordinated checkpoint. The Recovery Overseer determines the

usage of checkpoints whose main purpose is to recover from

failure with minimum response time and waiting time. The

system provides a Communication System with an intra

messaging method.

An overview of workflow temporal checkpoint selection is

presented in [15]. A temporal checkpoint selection strategy to

deal with business workflows is proposed. Several consistency

models for business and scientific workflows such as

Throughput based temporal consistency model, Response-time

based temporal consistency model, probability based temporal

consistency have been discussed. The experimental results

show the efficiency of the models above models.

In [16] Earlier strategy included a non-preemptive scheduling

with task migration algorithm. This method had a major

drawback of starting again the task in another virtual machine.

This greatly increases the execution time of the migrated task.

The proposed solution here includes an algorithm that migrates

the aborted task and starts the execution at a point where the

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.6, October 2017

13

latest checkpoint was saved. This leads to better performance

and achieves QoS

In [17] the strategy involves computing the optimal number of

checkpoints based on failure event distribution. This is generic

in application. Various parameters like check-pointing

overload, time delay have an impact on the cloud system. To

optimize the impact and for better performance an adaptive

algorithm is designed. The parameters that are considered for

implementing the model are number of jobs, user request of

multiple task, probability of failure event, checkpointing cost,

checkpointing position, execution time and wall clock time.

Dynamic optimization of checkpointing positions and local

disk vs shared disk checkpointing are the main concepts used in

Adaptive optimization of Fault Tolerance. Experimental results

show the better suitability of the system for large scale

applications.

In [18], fault tolerance module includes multilevel checkpoint

functionality along with load balancing algorithms to decrease

the checkpoint overheads. Checkpointing efficiency is

improved and checkpoint overhead is reduced by considering

various metrics such as computation time, migration time,

latency, overhead, checkpoint ratio and response time. By

considering the above parameters the algorithm finds an

optimal checkpoint interval which provides high performance.

The main areas addressed in this paper are checkpoint overhead

and checkpoint latency.

In [19],a fault tolerant architecture of BFTCloud based on a

Byzantine fault tolerance approach is proposed with five major

operations such as the primary node selection, replica selection,

request execution, primary node updating, and replica updating.

The primary node selection is based on the Qos requirements,

which handles the request. The replicas performs the required

operation and the results are updated to the primary node. The

BFTCloud provide high consistency and fault tolerance along

with better performance.

6. PROPOSED MODEL
In cloud computing the hypervisor sits on the hardware

providing abstraction for the above layers. The VMM provides

a virtual environment for the virtual machine which has

multiple operating systems running concurrently to service the

user request. A dynamically adaptive checkpoint model is

proposed to reduce the checkpoint counts and checkpoint

overhead. The fault tolerance layer handles the checkpointing

process. The numbers of checkpoints are ascertained

dynamically within the process itself based on the rate of VM

failures adaptively. The proposed model is shown in Fig 3.

Fig 3: Checkpoint Model

The success of the cloud computing environment primarily

depends on high level of cloud serviceability and to meet the

requirements of SLO. An efficient fault tolerance model

proposed in this paper helps to provide a dynamically adaptive

checkpoint method minimizing checkpoints overhead and

trails.

7. REFERENCES
[1] Y. Li, Z. Lan, “Exploit failure prediction for adaptive

fault-tolerance in cluster”. Proceedings of the sixth IEEE

International symposium on cluster computing and the

grid, Vol 1, May 2006, pp. 531-538.

[2] P. Das, P. Mohan Khilar, "VFT: A Virtualization and

Fault Tolerance Approach for Cloud Computing,"

Proceedings of the IEEE Conference on Information and

Communication Technologies (ICT 2013), Kanyakumari,

Tamil Nadu, in press, 2013, pp. 473-478.

[3] Dawei Sun, Guiran Chang, Changsheng Miao,

XingweiWang,” Analyzing, modeling and evaluating

dynamic adaptive fault tolerance strategies in cloud

computing environments”, in JSupercomputer March

2013

[4] R. Buyyaa et al,” Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering

computing as the 5th utility,” Future Generation Computer

Systems, vol. 25, 2009, pp. 599-616.

[5] D. Singh, J. Singh and A. Chhabra, “High availability of

Clouds: Failover Strategies for Cloud Computing using

Integrated Checkpointing algorithms”, IEEE International

Conference on Communication Systems and Network

Technologies, 2012.

[6] P. Gupta and S. Banga, “Review of Cloud Computing in

Fault Tolerant Environment with Efficient Energy

Consumption,” International Journal of scientific

research and management, Vol. 1, Issue 4, 2013, pp. 251-

254.

[7] Bala, A., & Chana, I. (2012).,” Fault Tolerance-

Challenges, Techniques and Implementation in Cloud

Computing”, International Journal of Computer Science

Issues (IJCSI), 9(1).

[8] S. Siva Sathya, S. Kuppuswami, K. Syam Babu, “Fault

tolerance by checkpointing mechanisms in grid

computing”, Proceedings of the International Conference

on Global Software Development, Coimbatore, July 2007

[9] Raman Kumar, Dr. Parveen Kumar ,”Review of Some

Checkpointing Schemes for Distributed and Mobile

Computing”, Int. J. Advanced Networking and

Applications Vol: 06 Issue: 06 (2015) ISSN: 0975- 0290.

Hardware Layer

Hypervisor/VMM

VM Layer

……………………….
VM 1

Fault Tolerance Layer

Scheduler

Resource Server Checkpoint Manager

 User Layer

VM 2 VM n

Cloud Clients Cloud Clients

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.6, October 2017

14

[10] Bakhta Merofuel and Ghalem Belalem, “Adaptive time

based coordinated checkpointing for cloud computing

workflows”, Scalable Computing, Practice and Expert

[11] Kalanirnika G R,V.M.Sivagami, Fault Tolerance in Cloud

Using Reactive and Proactive Techniques International

Journal of Computer Science and Engineering

Communications Vol.3, Issue 3, 2015, Page.1159- 1164

ISSN: 2347–8586

[12] Jing Liu, Jiantao Zhou and Rajkumar Buyya, Software

Rejuvenation based Fault Tolerance Scheme for Cloud

Applications .2015 IEEE 8th International Conference on

Cloud Computing.

[13] Daeyong Jung, SungHo Chin, KwangSik Chung,

HeonChang Yu, JoonMin Gil, An Efficient Checkpointing

Scheme Using Price History of Spot Instances in Cloud

Computing Environment.

[14] L. Arockiam and Geo Francis E ,FTM- A Middle Layer

Architecture for Fault Tolerance in Cloud

Computing.,Special Issue of International Journal of

Computer Applications (0975 – 8887) on Issues and

Challenges in Networking, Intelligence and Computing

Technologies – ICNICT 2012, November 2012.

[15] Wang Fu Tian, Liu Xiao & Yang Yun, Necessary and

sufficient checkpoint selection for temporal verification of

high-confidence cloud workflow systems, SCIENCE

CHINA Information Sciences, May 2015, Vol. 58

052103:1–052103:16

[16] R. Santosh, T. Ravichandran, Non-Premptive Real Time

Scheduling using checkpointing Algorithm for cloud

computing. International Journal of computer Applications

(0975-8887) Volume 80-No.9, October 2013

[17] Sheng Di, Yves Robert, Frédéric Vivien, Derrick Kondo,

Cho-Li Wang, Franck Cappello, Optimization of cloud

task processing with checkpoint-restart mechanism, ,

published in "SC13 Supercomputing-2013(2013)"DOI

10.1145/2503210.2503217.

[18] Dilbag Singh, Jaswinder Singh, Amit Chhabra, Evaluating

Overheads of Integrated Multilevel Checkpointing

Algorithms in Cloud Computing Environment, I. J.

Computer Network and Information Security, 2012, 5, 29-

38.

[19] Zhang, Y, Zheng, Z, & Lyu, M R 2011, ‘BFTCloud:A

byzantine fault tolerance framework for voluntary-

resource cloud computing’, In IEEE International

Conference on Cloud Computing

IJCATM : www.ijcaonline.org

