
International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.5, October 2017

Automatic Test Scenario Generation Technique for
Medical Cyber Physical Systems

Afrina Khatun
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

Naushin Nower
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

ABSTRACT
Medical Cyber Physical Systems (MCPS) are life-critical, context-
aware, and networked systems of software controlled medical de-
vices, that are responsible for monitoring and controlling the phys-
ical dynamics of patient’s bodies. MCPS are designed to provide
high-quality continuous care for patients in complex clinical sce-
narios, and also thus arise various safety issues compare with the
traditional medical systems. Controller software makes important
decisions in MCPS, that can directly affect peoples lives and thus it
is needed to validate and verify the whole MCPS system to ensure
patient’s safety. Although various techniques have been proposed
in literature to ensure safety of MCPS, most of them follow model
based simulation and do not provide any test cases for logically
testing the whole systems. An automated test scenario generation
approach for assisting the task of safety assurance of MCPS has
been proposed in this paper. The proposed technique takes system
state models as a input and extracts necessary information to gener-
ate state graph. In the next step, it extracts all possible system state
transitions. And, finally generates test scenarios based on the ex-
tracted paths and stores them in text documents for the tester. The
proposed technique has been applied on a Generic Patient Con-
trolled Analgesia Pump Model and has been successful to generate
test scenarios covering all the transitions of the state models. Thus,
it automatically generates all the test cases and by testing all the
paths in the system can ensure the safety of patients.

Keywords
Medical Cyber Physical Systems, UML diagram, Test case gener-
ation, Patient’s safety, GPCA

1. INTRODUCTION
Cyber Physical Systems (CPS) are a collection of computational
(cyber) and physical components that interact with each other to
achieve a particular objective within a specific time frame. CPS en-
able the virtual world to interact with the physical world in order to
monitor and control the intended parameter [1]. Because, of this in-
teraction the applicability of CPS is found in numerous time-critical
applications from smart house to smart grid. Emerging applications
of CPS include medical devices and systems, aerospace systems,
transportation vehicles and intelligent highways, defense systems,
robotic systems, process control, factory automation, building and
environmental control, smart spaces, intelligent home and so on [2].

Fig. 1: The Generic View of MCPS

Moreover, the recent advances in wireless sensor networks (WSN),
medical sensors, and cloud computing are making CPS as a po-
tential candidate for advanced health care applications including
in-hospital and in-home patient care which is known as a Medical
Cyber Physical Systems (MCPS) [3]. These advances promise to
provide CPS the ability to observe patient conditions remotely and
take actions regardless of the patient’s location.
In MCPS, traditional clinical scenarios are viewed as closed-loop
systems in which the caregivers are the controllers, medical devices
act as sensors and actuators, and patients are the physical plants
as shown in Figure 1. This system incorporates feedback from the
plant, and the software is said to be a closed-loop controller. Exam-
ples of closed-loop controller software in MCPS include automated
insulin pumps, pacemakers, anesthesia devices, etc. The patient’s
physiological conditions are the inputs to the software and the out-
put is the action to take, such as how much medicine to deliver. The
software maintains state (e.g. the values of past readings) and then
awaits another input of the patient’s condition before deciding on
the next action, and thus the loop continues [4].
Thus, MCPS are life safety critical, context-aware, and networked
systems of medical devices that are collectively involved in treat-
ing a patient. These systems are planned to use in hospitals to pro-
vide high-quality continuous care for patients in complex clinical
scenarios. The goal of MCPS is to improve the effectiveness of
patient care by providing personalized treatment through sensing
for ensuring safety. However, the increased scope and complexity

1



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.5, October 2017

of MCPS relative to traditional medical systems present numerous
developmental challenges [5]. In addition, the quality assurance of
controller software is one of the utmost importance because the
cost (either monetary or in terms of health and lives) of faults in
the implementations can be enormous. In medical systems, a single
information flaw can lead to unrecoverable damages, hence ensur-
ing validation of MCPS is a must. Thus, to ensure the safety of
patients, the whole systems must be carefully tested before being
applied to the reality. To make a MCPS effective, it is necessary
to test all possible paths of the system state. Testing all the paths
provide full coverage for ensuring patient’s safety to anticipate the
identification of all errors.
Various techniques for ensuring safety or validating safe work
flow of medical systems have been proposed in literature. Most
of the techniques represent the full system and system interaction
in model based manner using modeling tools or various self pro-
posed model notations. These techniques focus on model based
testing approaches by simulating generated state models of the sys-
tem. However, these model based approaches do not provide any
test scenarios for logically testing the transitions of whole system
states. As all possible logical transitions of the system states are
not tested during model simulations, hence the untested transitions
can cause severe safety threats while real life patient medication.
To overcome these limitations, automated all possible test scenario
generation is required which can ensure safety.
Lee et. al. states MCPS as a safety critical system where safety in-
troduces numerous challenges, such as achieving high assurance in
system software, intoperability, context-aware intelligence, auton-
omy, security and privacy, and device verifiability etc [5]. Andrew
et. al. proposed a model-based framework for testing MCPS that
includes a modeling language with formal semantics considering
MCPS as a Virtual Medial Device (VMD) [6]. They also used a
Medical Application Platform (MAP) that provides the necessary
deployment support for the VMD models [6]. However, the tech-
nique only gets notification about an occurrence of a failure, it can-
not detect the actual cause of the failure. Wu et. al. presented a work
flow adaptation and validation protocol to help physicians safely
adapt work flows which can react to patient adverse events based
on the pathophysiological models [7]. Their technique focused on
dynamically adapting the work flow and validating safety require-
ments. This technique requires continuous physician involvement
and supports only single work flow at a time. Moreover, the safety
validation protocol does not produce all possible test scenarios for
the transitions of the whole system. Banerjee et. al. proposed a the-
oretical framework for testing cyber physical interactions, empow-
ering CPS researchers to systematically design solutions for ensur-
ing safety, security, or sustainability [8]. Nevertheless, the frame-
work focus on considering the spatio-temporal physical environ-
ment while testing the interactions among physical aspects, com-
puting aspects and their tight coupled interactions only.
In the paper [9], the author proposed an automatic test case gener-
ation approach for closed loop controller software. Their proposed
approach takes source code as input and generates test cases to
cover all possible paths of the source code. This approach consists
of two steps: test case generation and test suite reduction. The test
case generation step generates test cases using KLEE, a test case
generation tool. KLEE uses symbolic execution to identify all pos-
sible sub paths, and constraint solver to generate test cases that sat-
isfy those paths. However KLEE generates redundant test cases that
cover the same path or state repeatedly. Therefore, the test suite re-
duction step generates a sub-path coverage matrix from the KLEE
generated test cases. It then applies Minimum Set Cover Problem
on the coverage matrix and finds the reduced test suite that covers

Fig. 2: Proposed Automatic Test Scenario Generation Approach

all sub-paths. The approach seems a source based test generation
approach. However, system source code is often inconsistent with
system requirements. Therefore, the approach lacks semantic in-
formation which is found in system UML models, such as state
diagram. As a result, the generated test cases fail to cover all the
states of system models.
None of the above mentioned technique tries to extract all possible
transitions among the various states of the system. Since MCPS is a
highly sensitive application of CPS and its tiny information, device
or system flaw can cause serious damage of a patient, thus, it is
necessary to test all possible paths of the system to ensure patient
safety. Therefore, only all the possible transitions among the states
of the system state model can ensure the safety of MCPS.
This paper proposes an automatic test scenario generation proce-
dure for MCPS that can cover all possible transitions. The tech-
nique first takes the system state diagrams as input in a XML for-
mat. The formatted XMLs are parsed to extract system states, tran-
sitions, conditions and event triggers. Simple Depth First Search
(DFS) algorithm is applied on the extracted state diagrams to ex-
tract all possible simple unique paths from the diagrams. Based
on these extracted transition paths test scenarios are prepared and
stored in a text document. As all the possible interactions are con-
sidered, hence these test scenarios would be able to ensure safety
of the system.
The rest of the paper is organized as follows. Section 2 describes
the proposed methodology about how all possible transition scenar-
ios can be produced. Section 3 describes an case study of generic
patient controlled analgesia pump model as an example of MCPS.
Section 4 discusses the probable improvements of the proposed
technique and Section 5 concludes the paper.

2. PROPOSED AUTOMATIC TEST SCENARIO
GENERATION APPROACH

In this section, an automated test scenario generation approach for
MCPS is proposed. As mentioned above, the existing techniques
only focus on representing the system using modeling notations
and model simulations for safety checking. However, these tech-

2



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.5, October 2017

niques are unable to ensure the safety of a patient because they do
not consider all possible transition sequences of the state models,
which are required to be tested for safety assurance. To overcome
the limitations of above mentioned techniques, an automated test
scenario generation technique for MCPS systems is proposed.
The overview of the proposed technique has been illustrated in Fig-
ure 2. To deploy the proposed approach, an realistic assumption
is made that the state diagram of the system is available, since
state diagram is produced in the requirement specification phase.
The proposed automated test scenario generation approach consists
three modules - Parser, Path Generator and Test Scenario Writer.
Each of these modules perform predefined responsibilities. Parser
module processes input data into program readable format. It takes
UML state diagram as input, and extracts necessary information for
test generation. The Path Generator module generates all possible
paths required to be tested from the extracted UML information.
Finally, the Test Scenario Writer module produces and stores test
cases for those extracted paths in order to assist validation.

2.1 Parser
The Parser module is the input data provider of the proposed ap-
proach. It receives XML formatted state diagrams as input. Each
state diagram is generally associated to a class. As a result, the
transition paths in a state diagram represent the valid paths in the
system class which needs to be tested. Therefore, this module ex-
tracts information about states, transitions, corresponding guards
and action events from the tags of the UML state diagrams. Once
these information are extracted from the XML files, they are used to
generate state model graph for further processing, where the graph
nodes represent system states, and edges represent transitions as
well as events and conditions.

2.2 Path Generator
The Path Generator module is responsible for generating possi-
ble transition paths for test scenario generation. In order to ensure
safety of a system, all possible paths in the system execution needs
to be tested. If all the states and transitions are covered with test
scenarios, it ensures that all possible paths of the system is tested.
Therefore this module receives the extracted state graph from the
Parser module as input. It then applies simple DFS algorithm on the
state diagrams to generate all possible transition paths of the sys-
tem. However, this step can produce a number of redundant paths.
Thus, path generation module considers simple paths which do not
contain same edge twice. The consideration of simple path enables
the proposed approach to handle self loops and extract unique tran-
sition paths also. These generated paths are stored in a document
and act as input of the next module for test scenario construction.

2.3 Test Scenario Writer
The Test Scenario Writer performs the task of producing test cases
for covering possible transitions in the state diagrams. Once all the
possible transitions among the states have been extracted, this mod-
ule takes the transition path lists as input. In order to generate test
scenario for each extracted transition path Algorithm 1 is proposed.
Algorithm 1 takes a path list (P) and a corresponding state dia-
gram (S) to which the path list belongs to as inputs. Each transition
in a state diagram contains a unique id. So, A path list, P con-
tains sequential unique ids (id) of state diagram transitions which
constitute to the path. In return, the algorithm generates a list of
test scenarios (testList). To represent test scenarios, a complex data
structure, Test is declared (line 2). Each test scenario has two at-

Algorithm 1 Test Scenario Generation

Input: A list of possible transition paths (P ) and a corresponding
state diagram (S)

Output: A list of test scenarios (testList)
1: Begin
2: Transition t, Test test
3: List < Test > testList
4: for each p ∈ P do
5: test← new Test()
6: test.id← p+ 1
7: for each transitionId ∈ p do
8: t← getTransition(transitionId, S)
9: test.transitionSequence.add(t.label)

10: end for
11: testList.add(test)
12: end for
13: End

Fig. 4: MCPS with GPCA

tributes - test scenario id and a transition sequence to be tested. To
generate test scenario for each listed path a for loop is declared (line
4). For each path, p in the inputted path list, an instance of type Test
is initialized (line 5). The algorithm then assigns a unique number
to the id attribute of the test scenario instance (line 6). A inner for
loop is declared for iterating through the transitions of each path, p
(line 7). In the next step, the algorithm call a function getTransition
to extract a transition from a corresponding state diagram (line 8).
The function takes an id and a state diagram as arguments. It returns
the corresponding transition having the specified id from the state
diagram. This transition is a complex data type, Transition which
has two attributes - transitionId and label. Basically this label at-
tribute represents the method call, guard condition or action event
responsible for the transition. In the next step, the algorithm adds
the transition label to the transition sequence of the test scenario
(test) as the next transition to be tested (line 9). Finally, the algo-
rithm adds the test scenario to the final list of test scenarios (line
11).
All the generated test scenarios are written and stored in text docu-
ments. The generated test scenarios assist the testers with test paths
that needs to be covered to ensure the safety of the system.

3. CASE STUDY
A complex Generic Patient Controlled Analgesia (GPCA)] [10],
[11] Infusion Pump is considered here as an example of MCPS to
illustrate the proposed approach. The test scenario generation of
GPCA can serve as a generic example to generate the test scenarios
for testing other close loop systems also. GPCA Infusion system
is a MCPS system that allows patients to a self-administer for a

3



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.5, October 2017

Fig. 3: The GPCA Model System Architecture [11]

controlled amount of drug, by patient bolus mode to alleviate acute
pain. There may be multiple bolus modes. In clinician bolus mode,
the drug is delivered at an elevated rate in response to a clinician’s
request. For example, the clinician may prescribe an elevated rate of
infusion for a period of time at the beginning of infusion therapy.
Figure 4 shows a GPCA device in a typical usage environment,
such as a hospital or a clinic.
The GPCA devices are usually built with capability to monitor and
notify the clinician of exceptional conditions, for example, if the
drug reservoir is running low or if there are air bubbles in the sys-
tem. The GPCA has three primary functions: (1) deliver the drug
based on the prescribed schedule and patient requests, (2) prevent
hazards that may arise during its usage, and (3) monitor and notify
the clinician of certain exceptional conditions encountered. Thus
GPCA can be act as both monitoring and actuation device. Before
going to the details of the test scenario generation of GPCA, the
overview of GPCA and state diagram of GPCA is presented for
better understanding.

3.1 Overview of GPCA Architecture
An architectural overview of the GPCA model has been illustrated
in Figure 3 [11]. The GPCA consists of three tiers - System Compo-
nent Tier, actual GPCA Pump Tier and User Interface Tier. At the
lowest tier in this architecture are system model components repre-
senting actual pump components (such as the pump controller, de-

livery mechanism, power unit, etc.). The middle tier consists of the
core GPCA model, implemented as a pair of communicating state
machines (labeled State Controller and Alarm Detecting Compo-
nent in the Figure 3). The top tier represents the pump’s User Inter-
face (UI) that is used to display various messages, and allows users
to program the pump. Signals provided by the core GPCA model
enable communication with the user interface and various system
components. In this paper, the generated test cases for the middle
GPCA tier (State Controller and Alarm Detecting Component) is
presented for page limitation.
The primary purpose of the GPCA State Controller is to model the
drug administration process such as the programmed basal rate and
any bolus doses that the patient may request. Based on these drug
transformation, the Alarm Detecting Component identifies any in-
consistencies or system states and notifies the State Controller.

3.1.1 The GPCA State Model Representation.

A state model represents the states of the system along with transi-
tion based on the events or conditions which cause state transitions.
Similar to general state models, the GPCA model also consists a
set of state machines denoting the various states of the infusion
pump and the transitions between these states. The transitions are
triggered by various events or guard conditions. The events rep-
resent user queries and guard conditions represent mathematical
or Boolean expressions consisting of state variables. Hence, the

4



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.5, October 2017

GPCA state models are generally represented by five components.
These components are Initial state, Set of possible states, Set of
transitions such as events and guard conditions, Set of final states
and Set of actions performed on state variables as a result of transi-
tions.
The overall state model diagram of the State Controller is presented
in Figure 5 [11] which is used as a input of the proposed approach.
The state model is further divided into sub machines for two rea-
sons. Firstly, states and transitions that collectively perform a spe-
cific task should be isolated into one group. Secondly, once a sub-
machine is revised or elaborated, the rest of the state machine re-
mains unchanged, except for its interaction with the sub-machine.
The Check Drug Routine, Infusion Configuration Routine and Infu-
sion Session Sub-Machine are the sub modules of GPCA state con-
troller. Each of the sub modules can be further expressed into the
state diagram and need to be tested. As an example state diagram
of Infusion Session Sub-Machine is shown in Figure 6. For the page
limitation, other sub modules are left abstract in this paper. The In-
fusion Session Sub-Machine module represents infusion operations
of the pump. The Infusion Configuration Routine demonstrates the
work flow that a user needs to go through in order to prescribe a cor-
rect infusion treatment for the patient. On the other hand, the Check
Drug Routine sub module checks whether the loaded drug satisfies
with the prescription defined in the drug library. The Alarm De-
tection module receives signals from sensors and sends them back
to State Controller module and vice versa. In this paper, test case
generation for overall GPCA sate machine (Figure 5) and infusion
pump’s software(InfusionSession SubMachine module (Figure 6))
is presented that controls the drug infusion and raises alarms to no-
tify the clinician when hazards are detected.

3.2 Test Case Generation for GPCA
At first, the proposed approach receives the XML formatted state
diagrams as input. The state diagrams of GPCA system are con-
verted into XML format using Enterprise Architect [12]. A partial
view of the XML formatted GPCA state model is illustrated in Fig-
ure 7. The Parser module then parses the input state diagram to
extract necessary information. For example, it identifies the states
and transitions by analyzing the <state> and <transition> tags re-
spectively. Similarly, the information regarding method invocation,
guard conditions and action events are extracted from the attributes
of <transition> tag.
The Path Generator module uses the extracted UML information to
generate state graphs and applies DFS algorithm on these graphs to
produce all possible simple paths as stated in subsection 2.2. The
lists of generated paths are then sent to the Test Scenario Writer
module for further processing.
Finally, Test Scenario Writer module applies Algorithm 1 on the
extracted path list to generate test scenarios for the possible state
interactions of the GPCA. The number of generated possible test
scenarios for GPCA State Controller state model of Figure 5
and Infusion Session Sub Machine state model of Figure 6, are
2 and 12 respectively. Generated test scenarios for these mod-
els are showed in Figure 8 and 9 respectively. A sample sce-
nario of the GPCA State Controller model of Figure 6 depicts that
the system can get activated from PowerOff state, and can create
a new infusion instruction after checking few configuration sta-
tus. This scenario is executed by visiting several state transitions
such as - PowerOff –> Post–> PostDone–> CheckDrugRoutine–
> InfusionConfigurationRoutine–> InfusionSessionSubMachine–
>CheckDrugRoutine. To ensure the safety of the system this sam-
ple scenario needs to be tested.

Fig. 8: Generated Test Scenario of GPCA State Controller

Fig. 9: Generated Test Scenario of Infusion Session Sub Machine

4. DISCUSSION
The proposed technique assists the task of tester by automatically
generating test scenarios of GPCA by using the state transitions.
In this paper, generated test scenarios for GPCA state controller
module and InfussionSessionSubMachine sub module is depicted.
However, the test cases of other modules are not provided for page

5



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.5, October 2017

limitations. By using this proposed technique, the whole system as
a module, as well as all sub modules and the interaction among dif-
ferent modules can be tested. In addition, the proposed technique
can be applicable for the test case generation of any CPS applica-
tions. However, initially only simple paths of the state models is
considered, as a result test scenarios regarding self loop transitions
are ignored.
However, gradual modification and application of the proposed
technique on different context projects would enhance the tech-
nique and increase its effectiveness.

5. CONCLUSION
The significant expansion of safety-critical systems like MCPS re-
sults in a qualitatively larger space of behaviors that needs to be
”covered” during testing, not only at the system level but also at
subsystem and unit levels to ensure the safety of a patient. Thus,
to handle this kind of large system, automation in test case genera-
tion is necessary. A major challenge in this area is to automatically
generate a set of test cases that, collectively, guarantees safety of a
patient and system. To ensure the patient safety, an automated test
scenario generation approach for MCPS by generating all possible
test cases is proposed in this paper.
The proposed approach uses UML model such as state diagram
as a input which has emerged as the de facto standard for model-
ing software systems also [13]. The overall implementation is per-
formed using three steps. The first step is Parser, which takes the
XML formatted state diagrams as input and extracts necessary in-
formation for graph generation. The Path Generator step takes the
generated graph as input and uses DFS algorithm to extract all pos-
sible transition paths. The final step, Test Scenario Writer generates
test scenarios based on the extracted transitions paths.
For analyzing the applicability, the proposed technique has been
applied on an open source GPCA Model. The technique has been
successful in generating test scenarios which covers all possible
transitions of the model.
However, the proposed test case generation approach is based on
semantic from XMLs and ignores syntax from source. In future, it
is needed to incorporate syntax source code also for more concrete
test case generation. In addition, further investigation is required to
find the optimal set of test cases with full coverage.

6. REFERENCES

[1] Lee, Edward A. “Cyber physical systems: Design challenges.”
Object oriented real-time distributed computing (isorc), 2008
11th IEEE international symposium on. IEEE, 2008.

[2] Nower, Naushin, Yasuo Tan, and Azman Osman Lim. “Traf-
fic pattern based data recovery scheme for cyber-physical sys-
tems.” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 97.9 (2014): 1926-
1936.

[3] Lee, Insup, and Oleg Sokolsky. “Medical cyber physical sys-
tems.” Design Automation Conference (DAC), 2010 47th
ACM/IEEE. IEEE, 2010.

[4] Murugesan, Anitha, et al. “From requirements to code: model
based development of a medical cyber physical system.”
(2014).

[5] Lee, Insup, et al. “Challenges and research directions in med-
ical cyberphysical systems.” Proceedings of the IEEE 100.1
(2012): 75-90.

[6] King, Andrew L., et al. “Assuring the safety of on-demand
medical cyber-physical systems.” Cyber-Physical Systems,
Networks, and Applications (CPSNA), 2013 IEEE 1st Inter-
national Conference on. IEEE, 2013.

[7] Wu, Po-Liang, et al. “Safe Workflow Adaptation and Valida-
tion Protocol for Medical Cyber-Physical Systems.” Software
Engineering and Advanced Applications (SEAA), 2015 41st
Euromicro Conference on. IEEE, 2015.

[8] Banerjee, Ayan, et al. “Ensuring safety, security, and sustain-
ability of mission-critical cyberphysical systems.” Proceedings
of the IEEE 100.1 (2012): 283-299.

[9] Murphy, Christian, Zoher Zoomkawalla, and Koichiro Narita.
“Automatic test case generation and test suite reduction for
closed-loop controller software.” (2013).

[10] Generic PCA Infusion Pump Reference Implementation,
https://rtg.cis.upenn.edu/medical/gpca/gpca.
html, 23 12 2011.

[11] The generic patient controlled analgesia pump model
https://rtg.cis.upenn.edu/gip-UPenn/gip-docs/
GPCA%20Pump%20Model.doc

[12] Enterprise Architect, http://www.sparxsystems.com/,
Online; accessed 19 August 2016.

[13] Sarma, Monalisa, and Rajib Mall. “Automatic test case gen-
eration from UML models.” Information Technology,(ICIT
2007). 10th International Conference on. IEEE, 2007.

6

https://rtg.cis.upenn.edu/medical/gpca/gpca.html 
https://rtg.cis.upenn.edu/medical/gpca/gpca.html 
 https://rtg.cis.upenn.edu/gip-UPenn/gip-docs/GPCA%20Pump%20Model.doc
 https://rtg.cis.upenn.edu/gip-UPenn/gip-docs/GPCA%20Pump%20Model.doc
 http://www.sparxsystems.com/ 


International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.5, October 2017

Fig. 5: The State Diagram of GPCA State Controller [11]

7



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.5, October 2017

Fig. 6: The State Digaram of Infusion Session Sub-Machine [11]

Fig. 7: XML view of GPCA State Model(Partial)

8


	Introduction
	Proposed Automatic Test Scenario Generation Approach
	Parser
	Path Generator
	Test Scenario Writer

	Case Study
	Overview of GPCA Architecture
	The GPCA State Model Representation

	Test Case Generation for GPCA

	Discussion
	Conclusion
	References

