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ABSTRACT
System reliability has become one of the major concerns on
industrial systems survey in order to guarantee a system life-
cycle far from malfunctions, disturbances and dangers. In this
context, Fault Tolerant Control systems are involved in automa-
tion engineering issues as a remedy to system reliability trou-
bles. Thereby, we deal in this paper with a graphical Active
Fault Tolerant Control (AFTC) law that compensates actuator
fault effects, guarantees desirable closed-loop performances and
system resilience. This tolerant control law is based on a lin-
ear Bond Graph (BG) adaptive observer to detect and estimate
failures. This control framework and the adaptive observer are
designed by a graphical concept using Bond Graph tool as a
useful methodology for multidisciplinary systems and which is
based on structural, causal and behavioural properties. To empha-
sis proposed controller efficiency, an hydraulic system with two
tanks is modelled and controlled with and without fault scenarios.

General Terms
Graphical Modelisation, Fault Tolerant Control.

Keywords
Bond Graph, Adaptive observer, Fault detection and estimation,
Active Fault Tolerant Control, Feedforward control.

1. INTRODUCTION
Increasing system productivity is often the most desirable aim in
industrial systems conception. However, human and system safety
is also considered as one of the important pretention and it becomes
a great challenge for automatical engineers. Thus, we have to con-
front any system malfunction which can be caused by system com-
ponent’s defaults or disturbances which can have bad consequences
as system or products damage or human life threat. As a key solu-
tion for these great and several issues which threat system safety
and may have critical and dangerous consequences especially in
aeronautics, medicines and chemical or nuclear industry, we find
Fault Tolerant Control system synthesis. This latter guarantees the
total or the partial compensation of failure effects with maintain
eligible system performances and essentially stability.
In literature, these FTC approaches can be further classified into
two categories: passive approaches (as robust control) and active

approaches (as adaptive control). These first control laws (PFTC)
are designed for a limited number of faults and they did not need
to have any estimation of failure magnitudes [11] [6]. However,
the latter type (AFTC) is designed on line and requires a fault es-
timation block so as to reconfigure control actions accordingly to
failure magnitudes and natures and to system performances losses
[19] [3]. Based on mathematical tools, we can find different fault
tolerant laws as the Eigenstructure Assignment (EA), the Pseudo
Inverse Model (PIM), the predictive control, the Linear Quadratic
(LQ) approach or using the Linear Matrix Inequality (LMI),etc.
[17]. Using these analytical tools, we can achieve failures accom-
modation task by modifying our classical control law or reconfigu-
ration tasks when we have to modify both the control law and the
system to be controlled in order to remedy system default and to
attain acceptable performances. In this present work, we are con-
cerned to deal with AFTC systems in order to compensate failure
effects.
In addition to these analytical laws, we also find graphical ones
which become more and more used in several engineering fields to
diagnose [4] and to control [16] systems positing here some ben-
eficial points for this use. Graphical approaches are often chosen
for their physical signification and structural representation, their
easy reading and interpretation using bonds and interconnections
and exclusively because they emphasis cause-effect relations and
power exchange through bonds. In other words, they show the dual
exchanges of two power variables: effort and flow between system
components. As graphical tools, we can find the bond graph used
on our case, the hyper graph, informational graphs, Causal Tempo-
ral graphs and the signed directed graphs,etc.
The aim of this paper is to treat active fault tolerant control prob-
lem using graphical approaches based on bond graph representa-
tion. This investigated strategy is founded on a feedforward control
to reach the steady-state tracking and inversal bond graph model
to maintain system performances nearly to those in faulty free case
and to accommodate faults. The proposed approach is established
using a graphical adaptive observer based on bond graph and which
is used to detect and estimate failures. In the present work, only ac-
tuator faults are considered.
The outline of this work is structured such as: Section II presents
some previous results concerning fault tolerance as related works.
In section III, the proposed AFTC strategy is given. In this part, a
flashback to our graphical adaptive observer used to detect and esti-
mate fault is addressed. Afterward, the efficiency of the developed
algorithm is shown by means of an hydraulic system in Section IV
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with a discussion part that analyzes obtained results and compares
them to those when we use an additive control law with a graphical
PI controller. At last, Section V draws some remarks as a conclu-
sion.

2. RELATED WORKS
In literature, we can find several approaches concerning graphical
fault tolerant control that give satisfying results. As graphical pas-
sive control law, we can highlight the work done by Nacusse et al.
[8] using BG. The proposed approach was based on an energy and
power shaping strategy. So they proposed to consider control sys-
tem parameters in terms of desired closed-loop energy and power
dissipation functions using a graphical representation called Target
Bond Graph (T BG). This T BG model can be considered as a refer-
ence model. Then, we talk here about modified Diagnostic Bond
Graph (mDBG) to generate a residual signal which is the error
between the desired and the actual control system performances.
If this residual signal becomes equal to zero, we can say that the
diagnosed system and the T BG have similar behaviours and then
we can say that control tasks are achieved. As graphical active ap-
proaches, we can say that most investigated works deal with inver-
sal Bond Graph in order to solve tolerant control problem using
controller reconfiguration. That means to find a novel system in-
put appropriate to our faulty system in order to achieve desirable
or nominal performances. Noting that to achieve system inversion
graphically we need to use bicausal bond graph properties. In this
case, we notice the use of system inversion in combination with the
Linear Fractional Transformation method (BG−LFT ) in [7] used
before to estimate failures magnitude. This inversal BG model was
used also by Borutzky [2] in order to compensate failures involving
Analytical Redundancy Relations (ARR) approach to calculate the
desired input. This strategy aims to reconfigure control law to de-
pending on fault scenarios and with the given hypothesis adopted to
consider a case where a single fault can be isolated and estimated.
To avoid isolation and estimation tasks used often before fault com-
pensation, Allous [1] have proposed to use a classical Luenberger
observer based on ARRs calculus that gives such residues. The lat-
ter becomes then an input to the inversal BG model.

3. PROPOSED FTC STRATEGIES
For diagnosis tasks, we can find multi graphical tools illustrated in
literature but we are interested here by graphical observer design to
detect, isolate and estimate actuator failures [13] [15] [5]. Based on
an analytical approach proposed by K. Zhang et al. [17], we have
synthesized in previous work a graphical observer that deals with
fault detection and estimation for linear models [9]. The elaborated
approach was based on an adaptive estimation using a Luenberger
observer as it will be designed in the sequel. Considering the linear
model (1): {

ẋ(t) = Ax(t)+Bu(t)+E f (t)
y(t) =Cx(t) (1)

where x ∈ℜn is the state vector, u ∈ℜq represents the set of input
variables, y ∈ ℜp is the set of output variables and f ∈ ℜr is the
set of fault variables (actuator faults in our case). A, B and E are
known parameter matrices and supposed to be of full rank.
Some assumptions are required for the state space model
∑(C,A,E).
Assumption 1. Its supposed that system defined in (1) is observ-
able.
Assumption 2. Invariant zeros of system lie in the open left half

plane.
To detect this fault, an adaptive observer is constructed in [17] as
follows:{

˙̂x(t) = Ax̂(t)+Bu(t)+K(y(t)− ŷ(t))+E f̂ (t)
ŷ(t) =Cx̂(t) (2)

where x̂ ∈ ℜn is the state vector of observer, ŷ ∈ ℜn is the output
vector of the observer and f̂ ∈ ℜn is an estimate of the actuator
fault f (t). K ∈ℜn×p is a selected gain matrix such that (A−LC) is
a stable matrix.
The errors vectors are defined, respectively according to the output
y(t) and the fault f (t):

ey(t) = ŷ(t)− y(t) (3)

e f (t) = f̂ (t)− f (t) (4)

To achieve the fast fault estimation using the adaptive observer, we
have to respect the following theorem :
Theorem 1: If there exist symmetric positive definite matrices
P,Q ∈ ℜn×n , an observer gain K ∈ ℜn×p and a matrix F ∈ ℜr×p

which check up the following conditions:

P(A−LC)+(A−LC)T P =−Q (5)

ET P = FC (6)

then we can admit that the fault evolution is:
˙̂f (t) =−ψFey(t) (7)

Note ψ ∈ℜr×r is the learning rate matrix. Reaching the last theo-
rem and from the last expression (8), we get the adaptive estimation
of the actuator fault that can be written as :

f̂ (t) =−ψF
∫ t f

t
ey(τ)dτ (8)

Further, in view of the previous expression, the estimation of the
actuator fault magnitudes can be achieved with a little delay in the
estimation task. Nevertheless this latter which appears in the es-
timation step may affect fault effects compensation. This is why,
Zhang et al. in [17] has adopted another expression that guarantees
a fast adaptive fault estimation reaching theorem 2.
Theorem 2. Given scalars σ ,µ � 0 if there exist symmetric posi-
tive definite matrices P ∈ℜn×n , Q ∈ℜr×r and matrices K ∈ℜn×p

, F ∈ℜr×p satisfying the two following conditions:

[
PA+AT P−PKC−CT (PK)T

− 1
σ
(AT PE−CT (PK)T E)

− 1
σ
(AT PE−CT (PK)T E)

−2 1
σ

ET PE + 1
σ µ

G

]
≺ 0

(9)

ET P = FC (10)

then we obtain the fault variation given by :

˙̂f (t) =−ψF(ėy(t)+σey(t)) (11)

From this last theorem, we can write the fast adaptive estimation
f̂ (t) for our actuator fault f (t) as :

f̂ (t) =−ψF(ey(t)+σ

∫ t f

t
ey(τ)dτ) (12)
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where ψ ∈ℜr×r is the learning rate matrix. F is given from the Lin-
ear Matrix Inequality (LMI) resolution whereas ey is the residual
vector.
Note that the first obtained result (see equation (8)) is only appro-
priate for identifying constant faults. Whereas equation (12) is im-
proved and applied for time-varying faults [17]. In addition, we can
affirm that added gain with the proportional part given by theorem
2, in fault estimation, to obtain with the residue integration given
by theorem 1 ameliorate considerably estimation fastness.
The adaptive graphical observer introduced in [9] is deducted au-
tomatically from the BG based representation where the causality
is in preferred integral form. Thereafter, the model observability is
graphically verified by means of the next definition.
Definition 1. The bond graph model is observable if and only if the
necessary conditions cited below are satisfied [12]: there exists a
causal path between each dynamic component and one of the out-
put detectors; each dynamic component is able to have causality
in a preferred derivative form corresponding to the BG description
without facing any conflict.
Afterwards, the checking of the structural observability, the associ-
ated BG observer model is developed founded on the bond graph
representation. Thereby, one requires to inject the outputs linearly
on each dynamical element of the observer-based BG model by uti-
lizing the modulated sources as shown in Fig.1. The observer gains
are thus determined via both pole placement and LMI resolution
methods so as to perform the detection and adaptive estimation of
occurred faults in the present case [12].

Fig. 1. Output linear injection.

In our previous work [10], we have synthesized a graphical AFTC
using a Proportional Integral (PI) controller and an additive control
law which is a Pseudo Inverse Model (PIM) law that compensates
failure effects [14] calling out the graphical observer above men-
tioned to estimate fault magnitudes. The tolerant law used can be
expressed as :

uFTC(t) = unom(t)+uadd(t) (13)

where uFTC(t) is the new control law, unom(t) is the synthesized con-
trol law in nominal case to fulfill system performances given in this
case by the graphical PI controller and uadd(t) is the additive law to
be elaborated in faulty case to reestablish nominal performances.
As well, uadd is computed such that additive fault effects can be
compensated. Hence, the following condition must be checked up :

Buadd(t)+E f (t) = 0 (14)

Knowing that matrix B must be of full rank. Given the fault es-
timation afforded by the graphical observer described herein, this

additive control law can be written as :

uadd(t) =−B+E f̂ (t) (15)

where B+ is the pseudo-inverse of the control matrix B calculated
as following :

B+ = [BT B]−1BT (16)

BT is the matrix transpose.
From Fig. 2 and Fig.3, we can see that the PI controller is often used
in control closed-loop to maintain the tracking error near or equal
to zero. To implement this regulator, a flow source as the system
input is the flow (or an effort source when the system input is an
effort), a 1-junction (respectively 0-junction) which represents the
gap between the reference input and the output signal, a resistive
element as a proportional part and an inertial one as integral part.
The different parameters are calculated generally according to dif-
ferent characteristics of the BG theory (the structure and causality
aspects).

Fig. 2. Graphical PI controller with flow source input.

Fig. 3. Graphical PI controller with effort source input.

Remembering here that before any control law synthesize, we must
check system structural controllability as it’s mentioned in Property
1.
Property 1.: To say that a BG model in a preferred integral causal-
ity is controllable, we must pay attention to the two following con-
ditions:
- if there exists at least a causal path between each dynamical com-
ponent I or C and one of the controlled sources MSe or MS f .
- if each dynamical component I or C admit a derivative causality
in preferred derivative bond graph model.
Here in our present work, we have synthesized a graphical AFTC
law using the inversal bond graph notion instead of the pseudo in-
verse matrix. The inversal bond graph is a useful tool to control
systems graphically after checking each time either the system is
invertible or not as it is mentioned in proposition 1 in the sequel.
The inversal system concept is founded on the use of an appropri-
ate input to generate the desired output. This suitable input here is
calculated through bicausality assignment on bond graph model.
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Proposition 1 : A linear system modeled by bond graph is invert-
ible if there exist at least one causal path between the input variable
and the output one.
To put forward this control law, we have called up some other pre-
vious work dealing with fault tolerance done by Zhang et al. [19]
and Dongsheng et al. [3]. To achieve fault accommodation task,
Zhang et al. [18] have synthesized a tolerant control law which is
based on a feedback control part in addition to a feedforward con-
trol strategy. The feedback block is used to restore closed-loop sys-
tem performances using the classical Eigenstructure Assignment
(EA). While the feedforward block is used to reach the steady-state
tracking. The tolerant control law suggested can be then written as
(17):

uFTC(t) = K f orwardyre f −K f eedbackx (17)

where yref is the reference input. To improve tolerance task, Zhang
et al. [19] have ameliorated the last expression as (18):

uFTC(t) = K f orwardyre f +K f eedback(x− x∗) (18)

Taken the desired state value x∗ considered as a reference. The feed-
back control is also used by Dongsheng et al. [3] to tolerate faults
as below:

uFTC(t) =−K f eedbackx+ yre f − f̂ (t) (19)

Noting here that f̂ (t) is the estimation of the considered fault. Tak-
ing account to these previous expressions, our proposed tolerant
control law can be written as next :

uFTC(t) = K f orward(yre f −y)+K f orwardyre f −K f orward f̂ (t) (20)

Kforwardis a gain of the inverse Bond Graph model. yre f is our input
reference, y is our system output and f̂ is an estimation for our
additive actuator fault given by the observer. We have to point out
here that this estimation should be accurate and fast in order to
achieve acceptable performances through the control task.

4. CASE STUDY : AN HYDRAULIC SYSTEM
In order to exemplify these previous theoretical results, we consider
an hydraulic system. As we can see from Fig.4, the chosen system
is composed of two tanks C1 and C2 in series connected by valve
R1 . The first tank C1 is feeded by a controlled pump modeled as a
source of a flow MS f : Fi. If the valve R1 is opened, the fluid flows
from the first tank to the second one.
The BG model is depicted by Fig.5. From this model, we can check,
easily, that our system is observable and controllable.

Fig. 4. Synoptic scheme of the real process.

Fig. 5. Bond graph model in preferred integral causality.

Table 1. Numerical values of system parameters
C1 R1 C2 R2

0.03m2 1m(m2s−1)−1 0.03m2 1m(m2s−1)−1

Calculating the different structural laws and the gain for each ele-
ment, the state space representation of this system can be written
as (21) where [x1,x2]

T is the state vector, u = Fi is the input flow
vector and [y1,y2]

T is the output vector which corresponds to the
flow delivered by each valve.

ẋ =

(
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The hydraulic system is subject to an actuator fault f (t) in our
pump characteristics. This failures is here represented by an addi-
tive actuator fault. The new state equation of the faulty bond graph
model is written as (22):


ẋ =

(
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(
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− 1
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0 1
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)(
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)
(22)

The numerical values of system parameters are shown in Table 1.
The control input (the inlet pump flow) is u(t) = 2.25×10−4m3/s
and initial conditions are equal to 0.
The considered actuator fault is an additive one represented by a
pulse signal during 3s (from t= 3s to t= 6s) with an amplitude of
−0.5×10−4m3/s.
To detect and estimate this failure, the adaptive observer is
designed graphically as illustrated in Fig.6 Where we find four
different gain values. Gain 1 and Gain 2 are linked to the residue ey
as any other classical Luenberger observer and they are calculated
using poles placement technique. Whereas, Gain 3 and Gain 4 are
obtained from the LMI resolution.

Therefore, the observer proportional gains are calculated as
Gain1 = K1 = 0.01 and Gain2 = K2 = 2.99.

The Gain3 and Gain4 are respectively equal to 0.2 and 0.025.
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Fig. 6. Adaptive Luenberger observer bond graph model.

The fast fault estimation obtained is here compensated using graph-
ical tolerant control laws ; starting with illustration of previous re-
sults given in [10]. As it is mentioned above, we study the liquid
flow evolution so we deal with a flow parameter. Thus, we have
used a graphical PI as illustrated in Fig. 3 integrated to the additive
law. Simulation results are given by Fig. 12. Then, we deal with
fault accommodation using inversal bond graph model to elaborate
the proposed tolerant control strategy given by (20). Control loop
blocks are illustrated by Fig.7 and simulation results as depicted
next in Fig. 13.

Fig. 7. Closed-loop system scheme.

Our system output evolution in nominal case is given by Fig.8.
From Fig.10, it can be seen that the residual signal response is
different from zero when the fault occurred. Therefore the actuator
fault is detected. The real trajectory is very close to its estimate as
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Fig. 8. Output signal in fault-free case.

seen in Fig.11 and this graphical observer allows a fast estimation
of the actuator fault signal.

Our system output evolution in an actuator fault situation is shown
by Fig.9.
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Fig. 9. Output signal in faulty case.
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Fault detection and estimation are illustrated by figures Fig.10 and
Fig.11.
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Fig. 10. Residual signal.
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Fig. 11. Fault signal and its estimate.

Simulation results of our system behaviour without and with con-
trol loop are given by figures 9,12, and 13.
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Fig. 12. Output signal in presence of graphical PI and additive control law.

From Fig.10, it can be observed that the fault indicator response is
different from zero which reveal that our fault occurred and then
detected. We can affirm that the used observer gives an accurate es-
timation as it can be seen from Fig.11 where real trajectory is very
close to its estimate. These results prove also a fast fault estima-
tion which is intended in order to achieve efficient active tolerance
task. Noting that this observer model can be used for constant or
time-varying actuator fault. Active fault tolerant control has been
here achieved, firstly, through additive control law and graphical PI

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

time (s)

flo
w

 (
 1

0 
−

4  m
3 /s

)

Fig. 13. Output signal in presence of the feedforward control and inversal
bond graph.

control which ensure system performances restoration as it can be
concluded from a simple comparison between Fig.12 and Fig.11
remembering here that this PI controller can be inserted directly
in control loop from some software tool boxes or synthesized as
mentioned in section III. Secondly, a feedforward control loop is
elaborated based on inversal bond graph model which is used often
in classic graphical control. This suggested law compensates fail-
ure effects as it is depicted by Fig.13 and provide desirable perfor-
mances due to feedforward strategy which solve steady-state track-
ing. Comparing results simulation of both control systems applied
for the hydraulic system, we can remarkably see that the second
law ensure better results to attenuate actuator fault. Moreover we
can assume that both of them can guarantee accurate responses and
system stability which is a critical point in control and especially
when we talk about actuator malfunctions or saturation.

5. CONCLUSION
In this paper a graphical Active Fault Tolerant Control system has
been investigated well-founded on bond graph concept to accom-
modate an actuator failure. This latter system malfunction was de-
tected and fast estimated through a graphical adaptive observer.
This synthesized law has been based on a feedforward control strat-
egy that ensure the steady-state tracking and an inversal bond graph
model using bicausality assignment to compensate failure effects.
The relevance and efficiencies of this proposed control methodol-
ogy are compared to those of a graphical PI controller integrated
with an additive control law proposed in our previous work. From
simulation results, we can see clearly that failure effects are com-
pensated using both tolerant laws. Furthermore, acceptable closed-
loop system performances are reached in spite of some limitations
such as necessary time to fault estimation and we have to point out
that fault estimation must be fast and accurate to achieve better ac-
commodation.
At last, we have to point out that in this paper we treat a system
with single actuator fault to make fault detection and identification
task easier. Sensor or component faults treatment or system with
multiple faults case can be the purpose for forthcoming works.
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