
International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.7, October 2017

UML Diagrams and Source based Automatic Test Suite
Regeneration for Improving State Model Coverage

Afrina Khatun
Institute of Information Technology

University of Dhaka

Naushin Nower
Institute of Information Technology

University of Dhaka

Kazi Sakib
Institute of Information Technology

University of Dhaka

ABSTRACT
Automated test regeneration intends to ensure high coverage of sys-
tem model from an existing test suite. While regenerating test suite,
most of the existing techniques ignore coverage achieved by exist-
ing test suite. As a result, these techniques leave important model
elements untested. Thus, an automatic test regeneration technique
to achieve high state model coverage is proposed. In the proposed
technique, Input Parser module processes inputted UML diagrams,
source code and test suite as XML elements, source class and test
steps respectively. The Coverage Computational module measures
model coverage result by executing the existing test suite. Finally,
Test Regeneration module regenerates executable test cases con-
sidering coverage result, UML and source information. The exper-
imental results on four projects show that the proposed technique
improves transition and state coverage of existing test suite on av-
erage by 61.26% and 52.95% respectively. Moreover, the technique
has also successfully regenerated 98% executable test cases.

Keywords
Software Testing; Automatic Test Regeneration; Model Coverage
Analysis; Unit Testing; Integration Testing.

1. INTRODUCTION
Automatic test regeneration refers the generation of test cases to
achieve certain goals (such as increased test suite effectiveness,
higher test coverage, higher model coverage etc.) using the knowl-
edge of existing test suite. It ensures the quality of a software prod-
uct by achieving high coverage. As system state diagrams repre-
sent software classes, therefore, high state model coverage indi-
cates that all the methods and interactions among the methods of
a class are tested. However, existing auto-generated test suite often
fails to achieve full coverage of the state model, leaving important
model elements untested. As a result, test regeneration needs to be
done for covering all elements of the system model. In this con-
text, automatic test regeneration ensuring state model coverage can
mitigate the manual efforts for identifying untested elements of the
state model, and regenerate test cases for covering these elements
in a cost effective way.
Test coverage is a quality assurance metric which indicates how
thoroughly a test suite exercises a given system [1]. On the other
hand, test case regeneration from existing test suite is required to
ensure high test coverage of a System Under Test (SUT).However,
the existing coverage analysis techniques conclude their task by

only identifying the covered and uncovered elements. These tech-
niques do not regenerate test cases for the untested elements. As a
result, the tester needs to manually regenerate test cases for those
untested elements. Therefore, an automatic regeneration approach
is required to identify the uncovered elements by measuring cover-
age of the existing test suite, and regenerate executable test cases
to cover these untested elements.
As test automation tools lack predefined coverage checking while
generating test suites, these tools generally fail to achieve full cov-
erage of the model. Existing coverage analysis tools measure the
coverage of a system model, based on some predefined coverage
criteria such as state coverage, transition coverage, all path cover-
age, etc. These tools only identify the tested and untested elements
of the system model by the exiting test suite. Therefore, to en-
sure coverage, either existing test generation algorithms need to be
changed or regeneration needs to be done. On the other hand, most
of the automated model-based test generation techniques generate
test cases from an abstract model of SUT [2] or source code [3]
or both [4]. However, those fail to determine how much coverage
is achieved through the generated test suite. As a result, important
system requirements may remain untested. Even if the number of
uncovered elements is small, this may lead to manual inspection of
the whole model again to find those elements.
Several techniques for test case regeneration, test case genenara-
tion and test coverage analysis have been proposed. Most of the
test coverage analysis [5], [6], [7] techniques measure the coverage
result, by identifying the covered model elements through exist-
ing test suites. These techniques do not generate text cases for the
untested model elements. Therefore, the existing test suite fails to
test all the elements of the software models. Few test case regener-
ation techniques [8], [9] have also been proposed in the literature.
These techniques regenerate test cases from existing test reposi-
tories. However, these techniques ignore already achieved model
coverage result of existing test repositories while regenerating test
cases. Existing test generation techniques focus only generating test
cases from model diagrams or source code or both. Therefore, those
techniques fail to cover all the elements of the models, which could
lead to manual inspection of whole model.
To overcome the limitations of the above mentioned approaches,
the coverage achieved through existing test cases needs to be mea-
sured, and this coverage result needs to be analyzed while regener-
ating test cases. In order to do that, this research incorporates cov-
erage analysis result with test regeneration to generate test cases for
the uncovered paths of the model. In order to do that, a technique
for automatic test regeneration by analyzing coverage is proposed

1



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.7, October 2017

to regenerate executable unit and integration test cases for achiev-
ing high coverage.
The technique contains three modules to manage the whole re-
generation process. The Input Parser, Coverage Computation and
Test Regeneration - each module performs specific tasks to support
the technique implementation. The Input Parser module receives
UML diagrams (such as class and state diagram), source code and
existing test suite as input. The Coverage Computation module
uses the processed test suite and UML elements to identify the
uncovered elements of the state model by executing the test cases
against the model. Finally, the Test Regeneration module uses
the coverage result to generate all possible uncovered transition
paths from the state diagram assuming it as a directed graph. It
then regenerates unit and intra class integration test cases for the
generated uncovered transition paths. A preliminary concept of the
proposed technique has been presented in [10]. However, without
rigorous experimental analysis, proper justification of the proposed
technique could not be confirmed.

To ensure the applicability and validity of the proposed technique,
the previous work [10] has been enhanced by analysing it on four
real life experimental projects. The technique has been applied on
an existing test automation framework, SSTF [4] for measuring the
coverage improvement achieved by the regenerated test suite. To
evaluate the technique’s competence in terms of executable test
regeneration, a new metric named Executable Test Sequence, has
been introduced in this paper. From the result analysis, it is shown
that the proposed technique improves both transitions and state cov-
erage on average 61.26% and 52.95% and also regenerates 98%
executable test cases.
The rest of the paper is organized as follows. The existing related
approaches in the literature are outlined in 2. Section 3 briefly
demonstrates the functionality of the proposed technique. The im-
plementation of the technique and experimental result analysis is
presented in Section 4. Finally, Section 5 concludes the paper with
some future directions.

2. LITERATURE REVIEW
In the literature, several automated coverage analysis and test re-
generation techniques have been proposed. Most of the techniques
emphasize only one of the tasks of either test regeneration or
coverage measurement. Some of the significant works related to
this research topic are outlined in the following part.

2.1 Coverage Analysis Approaches
A dependence graph-based test coverage analysis technique for ob-
ject oriented programs had been proposed by [5] et al. . In that paper
source code was instrumented and a call based system dependence
graph was constructed by parsing source code to measure tradi-
tional coverage criteria like - statement, branch, method coverage
etc. During coverage analysis phase, the graph is marked based on
coverage criteria and a coverage analysis report is produced for the
tester. Therefore, the approach did not generate test cases for the
uncovered part of the graph. However, if test regeneration could
be done for the unmarked edges of the graph, high coverage could
have been achieved.
A state based coverage analysis for C++ programs has been pro-
posed by Heckeler et al. [6]. This approach links the source code
with appropriate states of the transitions and executes existing unit,
system and integration tests to identify which states are covered.

However, the approach uses manual instrumentation and consid-
ers only state coverage. Considering transition sequence coverage
along with state coverage could ensure high integration test cover-
age. Again combining test regeneration technique with the cover-
age analysis process could produce more accurate test suites.
Ferreira et al. have proposed a state model based test coverage
analysis tool, called MoCAT [7]. The tool uses a UML class, state
model, and the test suite as input and generates test cases automat-
ically using Spec Explore based on user defined parameter speci-
fications. It then simulates the execution of the test suite over the
model to determine the coverage achieved through the test suite.
The MoCAT tool supports transition and state coverage criteria and
the coverage result gained through the test suite is represented in
a colored UML state machine model to the tester. However, the
tool ends its task by only concluding the incompleteness of the test
suite. Therefore, a tester would have to manually prepare test cases
for the uncovered elements.
Most of the existing coverage analysis techniques in the literature
only focus in identifying tested and untested elements and ignore
test regeneration. Thus, these techniques do not ensure full cov-
erage of a system state model. So even if the number of untested
elements is small, it leads to manual inspection of the whole model.

2.2 Related Approaches
Fraser et al. have proposed a tool called, EvoSuite for automatic test
generation of object oriented programs [3]. The approach divides
its task into two steps, whole test suite generation and mutation
based assertion generation. It implements whole test suite gener-
ation as a search based approach. A mutation testing approach is
taken for the effective assertion generation and it is implemented
as a tool. However, the approach does not consider model require-
ments and coverage while generating test cases.
An automatic test generation technique to detect operational, use
case dependency and scenario faults has been proposed by Sarma
et al. [11]. This technique converts the use case and sequence dia-
grams into Use case Diagram Graph (UDG) and Sequence Diagram
Graph (SDG) considering use case actors, start and end states, mes-
sage invocation etc. It then integrates the UDG and SDG graphs
into a system testing graph, and generates test cases based on all
use cases and sequence path coverage criteria. The technique also
identifies three types of faults: use case initialization faults, use case
dependency faults and operational faults. However, the test gener-
ation process totally ignores source syntax information and intra
class interactions of the available model elements.
Nahar et al. have proposed a framework for automatic test genera-
tion using software semantics and source syntax [4]. The technique
collects software semantic information by parsing XML formatted
UML class, state, and sequence diagrams. It also extracts software
syntax information from the source code files. Comparing consis-
tency between semantic and syntax information, it generates unit
and inter class integration test cases. However, the technique does
not consider the valid sequence of interactions, as well as it also
ignores intra class integration test cases.
Mingsong et al. have proposed a technique for automatic test case
generation for UML activity diagrams [12]. The approach first ran-
domly generates abundant test cases for a JAVA program under
testing. Then, by inserting probes into the member function of the
source code and executing test cases, it identifies execution traces.
The approach considers activity coverage, transition coverage and
simple path coverage criteria. Based on these coverage criteria, it
identifies test cases that exercised the activity diagram elements and
constructed a reduced set of test cases. Instead of reducing the test

2



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.7, October 2017

suite, regenerating new test cases ensuring the predefined coverage
could make the test suite more accurate.

2.3 Test Case Regeneration Approaches
Few test case regeneration techniques from existing test reposito-
ries have been proposed in literature. A sequential pattern mining
based test case regeneration technique for object oriented projects
is presented by Wei et al. [8]. The approach applies Bi-Directional
Extension mining strategy to obtain frequent subsequences of
method call from existing test suites. It constructs a set of method
subsequences, which occurs more than a calculated threshold
value and uses Genetic Algorithm (GA) based approach on these
method subsequences to regenerate test cases. The approach does
not identify whether the existing test repositories exercised all
the elements of the program or not. As a result, the regenerated
test cases contains the same but optimized method invocations
obtained from the existing test repository. If any method invocation
is missing in the existing test repository, the reproduced test cases
will fail to cover that.
Alshahwan et al. proposed test regeneration technique for web
applications using standard and value based Def-Use (DU) testing
[9]. This approach considers HTTP requests from a test suite to
form client side requests. It then combines fragment of these client
requests to regenerate test cases regarding server-side requests. For
constructing a test sequence, this algorithm identifies the HTTP
requests that define the state variables or database table name and
then identifies the usage of the variables. The main limitation of
this technique is that, it fails to regenerate test cases for methods,
which are not present in the existing test suite. It is so because
it only considers methods contained in the existing test suite. In
order to achieve higher coverage, the uncovered method call needs
to be considered.

3. AN AUTOMATIC TEST SUITE
REGENERATION TECHNIQUE FOR
IMPROVING STATE MODEL COVERAGE

In this section, the proposed test regeneration technique is pre-
sented. As mentioned earlier, existing test regeneration approaches
are unable to cover all the requirements of the software model,
because these regenerate test cases by combining existing test
cases or using evolutionary approaches. On the other hand,
coverage measurement tools conclude by only identifying the
tested and untested elements. Thus, the tester needs to manually
rewrite the test cases for the untested parts. In either case, the test
generation algorithms needs to be changed or test suite needs to be
generated from the scratch again. To overcome the aforementioned
limitations, an automated test regeneration approach is required
which incorporates the coverage result of the existing test suite
with the test case regeneration process.

3.1 Overview of the Proposed Test Suite Regeneration
Technique

The proposed technique computes model coverage result by using
existing test suites and incorporates this result with test regener-
ation process to ensure high model coverage of the system. The
top level overview of the proposed technique is shown in Figure
1. The proposed technique is constructed in such a way that, the
coverage result of the state model can be used while test regener-

ating processes. It consists of three major modules Input Parser,

Fig. 1: Top Level View of the Test Suite Regeneration Technique

Coverage Computation and Test Regeneration as shown in Figure
1. Each module performs some predefined responsibilities. Input
Parser processes the inputted data into a structured form. This mod-
ule extracts information from the source code, test suite and UML
diagrams which are provided by the user. The extracted information
is used later by the Coverage Computation and Test Regeneration
Module.
Coverage Computation Module considers each test step of a test
case and based on this test step, visits the possible transitions of
the state diagrams by evaluating the guard condition and actions.
This module then identifies the covered and uncovered elements of
the state model based on state, transition and simple path coverage
criteria to generate the coverage result.
Test Regeneration Module performs the task of test regeneration. It
uses the coverage result, extracted UML elements and method syn-
tax as inputs. Based on the coverage result this module regenerates
unit and integration test cases for covering the remaining states,
transitions and intra class method call sequences.

3.2 Internal Architecture of the Test Suite
Regeneration Technique

The internal architecture of test regeneration technique is shown
in Figure 2. Each module consists of some sub components which
support its functionality. The detail description of these modules is
given below.

3.2.1 Input Parser Module.
For the proposed technique, the Input Parser Module acts as input

data provider. It receives XML formatted UML diagrams, source
code and test suite files from a user defined location. The Input
Parser Module consists of three sub components – Source Syntax
Identifier, Test Steps Identifier and UML Element Identifier as illus-
trated in Figure 2.
The UML Element Identifier sub component receives XML format-
ted UML class and state diagrams. It then identifies class attribute
name, their initial values, method name and method parameter list
from class diagrams. As each state machine is usually associated to
a class, therefore, class methods represent the signature of transi-
tion call events of the state machine. This sub component also ex-
tracts information of states, transitions, corresponding guards and
action events from the state diagrams. This information is used later
by the Coverage Computation and Test Regeneration module to

3



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.7, October 2017

Fig. 2: Internal Modules of the Test Suite Regeneration Technique

compute model coverage result and, regenerate unit and integra-
tion tests respectively.
Test Steps Identifier sub component reads existing test suites. It then
parses each test case step by step. For a test case, it extracts each
method call statement along with its parameter values and passes
those to the Coverage Computation module. On the other hand,
The Source Syntax Identifier sub component extracts class object
construction, attributes and method syntax from the existing source
code files. It then passes those to Test Regeneration module for later
consistency checks.

3.2.2 Coverage Computation Module.
Coverage criteria must be measurable and be an indicator of the
test adequacy. Coverage Computation module is responsible for the
computation of the coverage achieved by existing test suite. One
of the coverage criteria applicable to system state models is tran-
sition based coverage. State and transition coverage represent the
full coverage of all methods of a class that can be verified using
unit tests. In addition, all simple path coverage represents the full
coverage of intra class method call sequence as well as integration
tests. Therefore, the proposed technique supports state, transition
and all possible simple path as coverage criteria.
A state is considered fully covered if all possible outgoing transi-
tions from the state is traversed at least once. A partially covered
state represents a subset of the outgoing transitions from this state
are covered. Moreover, an uncovered state is a state which is never
traversed through the test suite. These coverage criteria are used to
identify fully, partially covered and uncovered states. This module
consists of two components – Expression Evaluator and Coverage
Analyzer.

Algorithm 1 Coverage Analysis Algorithm

Input: Existing TestSuite
Output: Marked state diagram based on coverage

1: Begin
2: for each TestScript ∈ TestSuite do
3: get state diagram of TestScript corresponding

class
4: for each TestCase ∈ TestScript do
5: initialize an empty list V to store state variables

,class attributes and insert all variables into V
6: currentState← GETSTATE(TestStep[0])
7: for each TestStep ∈ TestCase do
8: Initialize an empty list T of possible transitions
9: Initialize boolean variables S,G

10: Transitions ←
GETOUTGOINGTRANSITIONS(currentState)

11: for each t ∈ Transitions do
12: S ← MATCHSIGNATURE(t.event, TestStep)

13: G← EXECUTEEXPRESSION(t.guard, V )
14: if S AND G then
15: insert t into T
16: end if
17: end for
18: if T = 1 then
19: EXECUTEEXPRESSION(t.action, V )

and mark currentState and t as covered
20: currentState← t.destinationState
21: else if T >1 then
22: Continue with next test case
23: end if
24: end for
25: end for
26: end for
27: End

The Coverage Analyzer sub component receives structured UML
class, state diagram elements and extracted test statements from In-
put Parser module. It then executes the test suite against the state
models based on Algorithm 1. The algorithm receives test suite files
as input. It is assumed that each class has one intra class integration
test script associated with it. For each test script, the algorithm iden-
tifies the corresponding state diagram. The extracted state diagram
contains state name, state variables, transition, guard conditions (if
any) and actions (if any) of transitions. State variables are a set of
variables that are used to describe the status of the states and are
updated with transitions. The guard condition of a transition is a
mathematical boolean expression of state variables which decides
whether a transition will be taken or not. The action of a transition
is an update operation which occurs after a transition is taken.
For each test case, the class attributes, state variables, and their cor-
responding initial values are stored in a list called V as shown in
Algorithm 1. For the first test step of each test case, the corre-
sponding currentState is identified in the state diagram. For each
current state, an empty list T is used to store all possible transi-
tions, and two boolean variables S,G are initialized for comparing
method signature and satisfying guard conditions respectively. In
the next step, the algorithm determines all the outgoing transitions
from the current state using the function GetOutGoingTransitions.
This function takes the currentState as a parameter and provides
the set of outgoing transitions as output from this currentStep.
For each outgoing transition t in the list Transitions, function

4



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.7, October 2017

MatchSignature compares whether the test step method call signa-
ture matches with the event call signature. MatchSignature method
considers both method name and parameter list during comparison.
Based on this comparison, Algorithm 1 updates a boolean value to
variable S. ExecuteExpression function evaluates the boolean guard
expression of tansition t. This method evaluates the guard condition
based on the value of method parameters and state variables. It re-
turns a boolean value that updates variable G. A possible transition
t from the current state is selected and inserted into list T, if above
mentioned boolean variables S and G are satisfied.
Both the guard condition and the action expression are handled by
the Expression Evaluator sub component. If a possible transition
is found, the corresponding action of the transition is also executed
by the ExecuteExpression function. Based on this transition the cur-
rent state and transition are marked as covered. The algorithm then
updates the currentState with the corresponding transition’s des-
tination state for the next iteration. If more than one transition is
found, it is discarded and the process continues with the next test
case. The similar process continues for all the test scripts. Finally,
the coverage result is stored in a document to compare with the
coverage achieved by the regenerated test cases.

3.2.3 Test Regeneration Module.
Finally, Test Regeneration module is responsible for regenerating
test cases for the uncovered paths and transitions. There are four
components that support the whole test regeneration procedure as
illustrated in Figure 2. These sub components are - Unit Test Regen-
erator, Integration Test Regenerator, Sequence Identifier and Test
Script Compiler and Runner.
After completion of processing, Coverage Computation Module
passes the computed coverage result to Unit Test Regenerator and
Sequence Identifier sub components for test regeneration. While
regenerating test cases, the event call structure of uncovered transi-
tions need to be matched with source syntax to ensure regeneration
of executable test cases. As mentioned above, states and transitions
represent available methods of a class, thus all state and transition
coverage ensure high coverage of unit test cases. Therefore, the
Unit Test Regenerator sub component receives the uncovered tran-
sitions and checks the consistency between source syntax and UML
method call signature for regenerating unit test cases.
On the other hand, for integration test cases, possible uncovered
path sequences are also need to be extracted. The Sequence Iden-
tifier sub component supports the Integration Test Regenerator by
providing those uncovered path sequences. To generate uncovered
path sequences, Sequence Identifier sub component applies Depth
First Search algorithm on the state model. The state machine model
of a system is a directed graph. Therefore, all possible simple paths
that is paths which do not contain same transition twice and con-
tains uncovered transition are selected as uncovered path sequences
and passed to Integration Test Regenerator sub component.
The Integration Test Regenerator sub component takes source code
syntax and UML information as well as uncovered path sequences
as input. Similar to unit test cases, before regenerating test cases,
this component compares the event call signature of uncovered
transitions with the actual method syntax to avoid inexecutable test
cases. It then regenerates integration test cases for the uncovered
paths and stores the regenerated test cases in test script.
The Manual Assert Statement Insertion sub component requires hu-
man interaction to manually set the assert statements and method
parameter values by replacing the default values in the test scripts.
Test script Compiler and Runner is responsible for setting up re-
quired libraries (for example JUnit for Java programs) to run the
test scripts. The regenerated test cases can be executed against the

state model in the similar way to check the increased coverage. Al-
though the proposed approach is implemented in java, the concept
of the proposed technique is platform independent.

4. IMPLEMENTATION AND RESULT ANALYSIS
This section demonstrates the effectiveness of the proposed tech-
nique by applying it on four sample projects. The effectiveness is
measured in terms of number of transition coverage, state cover-
age and valid executable test sequence generated by the proposed
test regeneration approach. This demonstration represents how the
proposed technique can mitigate the limitations of the existing
techniques which justifies the proposed technique. The coverage
achieved by both the existing test suite and regenerated test suite is
measured by existing coverage analysis technique MoCAT [7].

4.1 Environmental Setup
The proposed technique was developed using Eclipse Juno Version
4.2 which provides facilities to use JUnit testing framework for cre-
ating and running test cases. As the proposed technique evaluates
the guard and action conditions of the state transitions, Java Expres-
sion Parser library was used for parsing and evaluating those con-
ditions. For checking the method syntax with state diagram method
call structure, the source syntax information was parsed using Java
Parser. The UML state and class diagrams were converted in XML
format using an UML modeling tool, Enterprise Architect. Follow-
ing is the list of tools used for development and result analysis of
the proposed technique:

—Eclipse Juno Version-4.2 [13]
—Java Expression Parser (JEP) [14]
—Java Parser Version-1.0.9 [15]
—Enterprise Architect (EA) [16]
—Eclipse Plugin JUnit 4 [17]

Table 1. : Experimental Projects

Project Name No. of Classes
in Class Diagram

No. of State
Diagram

No. of TestScript
generated by
SSTF [4]

Alarm System 2 1 1
ATM System 4 2 4
Observer Pattern 5 1 1
POAS 23 12 1

The proposed technique regenerates test cases based on the existing
test suite and coverage result. Two test case regeneration tools are
available in the literature, [9] and [8]. However, these techniques
can not be considered for comparative analysis, as the context of
test regeneration in these techniques differ from the proposed tech-
nique in terms of test coverage criteria. On the other hand, SSTF [4]
is an automated test generation technique that considers UML di-
agrams and source code syntax while generating test cases. There-
fore, for measuring the effectiveness of the proposed technique,
SSTF [4] generated test suite is used as existing test suite. The ef-
fectiveness of the proposed technique is estimated by measuring
the extent of coverage improvement, the technique can add to the
existing test suite.

5



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.7, October 2017

4.2 Experimental Projects
For result analysis, the proposed technique is applied on four sam-
ple projects which are listed in Table 1 and also available at [18].
The table represents the project name along with the number of
classes in the class diagram, the number of available state diagrams,
and the number of test scripts in existing test suite, generated using
SSTF [4]. All these projects are implemented by considering the
actual model requirements, therefore these has been taken as ex-
perimental projects for analysis.
“Alarm System” is a simple java project which allows user to set
and deactivate alarm for any specific event in a system. The system
has a control panel which is connected to one siren and multiple
sensors. To activate the system, the user has to press a specific but-
ton in the control panel. To deactivate, the user has to insert the
right pin. After three failed attempts to insert the right pin, the sys-
tem becomes locked. If a sensor is activated, the siren starts after
few seconds. To shut the siren down, the user needs to insert the
correct PIN. This project was used for state based coverage analy-
sis in [7]. From this project, a class diagram containing two classes,
one state diagram and one test script (shown in Table 1) generated
by SSTF [4] are used as input in the proposed regeneration tech-
nique.
“ATM System” has some user accounts where the accounts are pro-
tected through account number and pin number. If a user enters the
right pin number, the user is allowed to perform some transactions
like checking balance, withdrawing and depositing money. A user
is also allowed to withdraw money if enough money is available in
the corresponding user account and in the system cash dispenser.
After two failed attempts to insert a pin, the account is locked. This
project was used as a case study in [10]. From this project four
classes, two state diagrams and four SSTF [4] generated test scripts
are inputted in the proposed regeneration technique.
The “Observer Pattern” is a software design pattern in which a sub-
ject notifies its observers about any event by calling one of the
methods of the observers [19]. This project was used for automatic
test generation in [4] and consists of five classes, one state diagram
and one generated test script which are used as input in the pro-
posed technique.
The Program Office Accounting Software (POAS) is an automated
accounting software for maintaining the expenditure of running
programs (such as bachelor, masters) in educational institutes. For
every semester, an amount of money is given to the program office
at the beginning of the semester. Based on the given amount and
previous semester residual amount, the program committee pre-
pares a budget for that semester.The budget includes five sectors -
Office Stationary, Exam Time Refreshment, General Refreshment,
Gift and Guest Attendance and Contingency Fund. The source of
this project contains 23 classes and 12 state diagrams. Only one
integration test script is generated by SSTF for this project, as it
ignored the intra class method invocations found in state diagrams.

4.3 Evaluation Metrics
The improvement in the coverage of regenerated test suite has been
evaluated by measuring transition coverage, state coverage and the
number of executable regenerated test cases.
Transition coverage is the ratio of the number of covered transitions
and total transitions in the state diagrams. Achieving full transition
coverage for a state diagram refers that all methods of the corre-
sponding source class are called and hence, tested. The ratio is mea-
sured using the following equation -

TransitionCoverage =

∑n
1 Tn (Covered)∑n

1 Tn (Covered) + Tn (Uncovered)
(1)

where Tn represents the number of transitions in the n th inputted
state diagram.
State coverage is the ratio of the number of covered states and the
number of states in the state diagrams. 100% state coverage of a
state diagram depicts that all possible method invocation from the
states of the class are tested. State coverage ratio is determined by
the following equation -

StateCoverage =

∑n
1 Sn (Covered)∑n

1 Sn (Covered) + Sn (Uncovered)
(2)

where Sn represents the number of states in the n th inputted state
diagram.
The proposed technique checks the source code method syntax
while regenerating test cases, as a result executable test cases are
generated. Therefore, the effectiveness of the technique is also mea-
sured by checking the number of executable regenerated test cases.
The result is represented by the ratio of executable test sequences
and total generated test sequences. This ratio is calculated using the
following equation -

ExecutableTestSequence =
SeqExecutable

SeqExecutable + SeqInexecutable
(3)

4.4 Result Analysis
The proposed technique is applied on above mentioned sample
projects to justify the effectiveness of the regenerated test cases.
The number of regenerated integration and unit test cases as well
as the number of covered and uncovered transitions for each experi-
mental project by the existing and regenerated test suite are enlisted
in Table 2. The table clearly shows that for each project, the num-
ber of covered transition by SSTF [4] is low, whereas significant in-
crease in the number of covered transition is achieved by applying
the proposed technique. For ’Alarm System’, the number of cov-
ered transition and uncovered transition are 8 and 9 respectively.
However, after applying the proposed technique, 7 integration and
9 unit test cases are newly generated which improves the number
of covered transition from 8 to 15.
The proposed technique intends to achieve high transition and state

Table 2. : Comparison between the Number of Covered and Uncovered
Transitions by SSTF [4] and by Proposed Regenerated Test Suite, and the
Number of Regenerated Integration and Unit Test Case

Project
Name

No. of Transitions
by SSTF [4]

No. of Transitions
by Proposed Regenerated
Test Suite

No. of Regenerated
Test Cases using
Proposed Technique

Cov. Uncov. Cov. Uncov. Integration
Test Case

Unit
Test Case

Alarm
System 8 9 15 2 7 9

ATM
System 7 9 15 1 3 5

Observer
Pattern 2 5 7 0 1 2

POAS 15 70 85 0 23 31

coverage. Therefore, the effectiveness of the technique is repre-
sented by the ratio of the number of covered transitions and states

6



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.7, October 2017

Table 3. : Comparison between Transition Coverage by SSTF [4] and Pro-
posed Regenerated Test Suite Technique and Improvement Ratio

Project
Name

Transition Coverage
Achieved by SSTF [4]

Transition Coverage
Achieved by Proposed
Regenerated Test
Suite

Improvement
Ratio

%
Cov. Uncov. Ratio

% Cov. Uncov. Ratio
%

Alarm
System 8 9 47 15 2 88.25 41.25

ATM
System 7 9 43.75 15 1 93.75 50

Observer
Pattern 2 5 28.75 7 0 100 71.43

POAS 15 70 17.64 85 0 100 82.36

of the state diagrams. The number of covered and uncovered transi-
tions for each sample project, achieved by existing test suite is also
measured by the same existing coverage analysis tool, MoCAT [7].
The ratio of transition coverage result achieved by existing test suite
and the proposed regenerated test suite is calculated using Equation
1 and is enlisted in Table 3. In each sample project the ratio of the
transition coverage achieved by the proposed technique is twice
than the existing coverage ratio. The improvement ratio column in
Table 3 represents how much improvement in transition coverage
of the existing test suite is achieved by applying the proposed tech-
nique. The results clearly depict that on average 61.26% coverage
improvement is achieved by the proposed technique.

Table 4. : Comparison between State Coverage by SSTF [4] and Proposed
Regenerated Test Suite Technique and Improvement Ratio

Project
Name

State Coverage
Achieved by SSTF [4]

State Coverage
Achieved
by Proposed
Regenerated Test
Suite

Improvement
Ratio

%

Cov. Uncov. Ratio
% Cov. Uncov. Ratio

%
Alarm
System 2 4 34 5 1 83.33 49.33

ATM
System 8 6 57.14 7 1 87.50 30.36

Observer
Pattern 3 3 50.00 6 0 100 50

POAS 12 55 17.91 67 0 100 82.09

Table 4 represents the compariosn of state coverage achieved by
SSFT [4] and the proposed techinque. As SSTF [4] ignores intra
class interactions while generating test cases, the results demon-
strate that only 39.76% average state coverage is achieved using
SSTF [4]. On the other hand, average state coverage gained through
the proposed regenerated test suite is nearly 92%. The remaining
8% coverage could not be achieved as proper test data was not
available in the test method parameters by the testers. However,
the improvement ratio represents that the proposed technique suc-
cessfully improves state coverage of existing test suite on average
by 52.95%.
Figure 3 and 4 represents the measure of transition and state cover-
age respectively of the existing SSFT [4] and proposed regenerated
test suite for each sample project. In each case, the proposed tech-
nique has been successful to increase the coverage of existing test
suite. The bar charts in Figure 3 and 4 show that for each project,
the regenerated test suite has higher bar which represents signifi-
cant improvement in coverage.
Table 5 represents regenerated Executable Test Sequence Ratio,

Fig. 3: Comparison of Transition Coverage achieved by Existing [4] and
Proposed Regenerated Test Suite

Fig. 4: Comparison of State Coverage achieved by Existing [4] and Pro-
posed Regenerated Test Suite

which is measured by Equation 3. The table depicts that nearly
100% of the regenerated test cases are executable test sequence.
However, in the case of ’Alarm System’, one inexecutable test se-
quence is generated, as there is a self-loop transition in that path
and the proposed technique considers only simple transition paths.
This is because, from state models it is difficult to know the loop
breaking constraint in advance for self-loop transitions and hence,
leads to different research scope. However, in the rest of the cases
almost all the regenerated test cases are valid executable test se-
quences.
Table 5. : The Number of Regenerated Test Cases by the Proposed Tech-
nique and Ratio of Valid Executable Test Cases

Project Name No of Valid Executable
Regenerated Test Cases

No of Invalid
Test Sequence Ratio

Alarm System 15 1 93.75%
ATM System 8 0 100%
Observer Pattern 3 0 100%
POAS 54 0 100%

4.5 Threats to Validity
This section discusses the threats which can affect the validity of
the proposed technique. Changes in factors such as implementation

7



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.7, October 2017

environment, experimental projects, evaluation metrics etc can in-
troduce scopes of improvement for increasing the effectiveness of
the proposed technique. Some of such factors are pointed below.
Internal Threats: The internal threats refer threats that affect the
validity of the results, depending on the implementation of the tech-
nique and the environmental set up of the experimental procedure.
The proposed technique as well as the experimental projects are
implemented in java programming language. Therefore, the result
gained through analyzing the experimental projects can differ when
experimented in platforms other than java.
External Threats: The experimental projects that are chosen and
the existing test suites used may affect the degree to which the re-
sults can be generalized. The experimental projects which are cho-
sen are used in existing techniques (For example, ’Alarm System’
was used in [7]). Those projects are also selected as those have as-
sociated state models. The existing auto-generated test suite and
UML class, state model diagrams which are inputted in the tech-
nique can also affect the results gained from the experiments.
Construct Threats: Construct threats are related to the metrics
which are used to analyze the effectiveness of the proposed tech-
nique. Any change in the metrics may also affect the generalization
of the experimental results. The results are analyzed based on tran-
sition coverage, state coverage and number of valid regenerated test
cases. Therefore, analyzing the results with other metrics can intro-
duce new improvement scopes for the technique.

5. CONCLUSION
Most of the existing coverage analysis techniques conclude their
task by only identifying tested and untested elements by the test
suite. These approaches do not regenerate test cases for the untested
elements. This paper proposes a test case regeneration technique
that tends to regenerate test cases to improve the coverage of the
existing test suite.
The Input Parser, Coverage Computation and Test Regeneration
module operate together to regenerate unit and integration test
cases. While Input Parser module processes UML, source and
test suite information provided by the user, Coverage Computa-
tion module identifies the covered and uncovered elements of the
state model. Test Regeneration module considers the coverage re-
sult, and information provided by Input Parser module to regener-
ate unit and integration test cases.
The experimental analysis on four projects, depicts that the pro-
posed technique improves the existing test suite on average by
61.26% and 52.95% transition and state coverage respectively. On
the other hand, 98% of the regenerated test cases are executable.
The incorporation of sequence diagrams along with the state dia-
grams can ensure inter class interaction coverage, thus directs to
new research scope. The proposed technique measures transition
sequence coverage as well as state coverage. Adding more cover-
age criteria such as branch coverage and guard condition coverage,
introduces future tasks. Test data generation techniques can also be
incorporated with the proposed technique as a future scope.

6. REFERENCES

[1] Shahid, M., Ibrahim, S. “An evaluation of test coverage tools in
software testing.” in Proc. of the 6th International Conference
on Telecommunication Technology and Applications (CSIT),
Vol. 5, pp.217–222, 2011.

[2] Utting, M., Legeard, B. “Pratical Model-Based testing A tools
Approach”, Morgan Kaufmann Publishers, 2007

[3] Fraser, G., Arcuri, A. “Evosuite: automatic test suite generation
for object-oriented software”, in Proc. of the 19th ACM SIG-
SOFT Symposium and the 13th European conference on Foun-
dations of Software Engineering, pp.416–419, ACM, 2011

[4] Nahar, N., Sakib, K. “SSTF: A novel automated test genera-
tion framework using software semantics and syntax”, in Proc.
of the 17th International Conference on Computer and Infor-
mation Technology (ICCIT), pp.69–74, IEEE, 2014

[5] Najumudheen, E. S. F., Mall, R., Samanta, D. “A depen-
dence graph-based test coverage analysis technique for object-
oriented programs”, in Proc. of the 6th International Confer-
ence on Information Technology: New Generations (ITNG),
pp.763–768, IEEE, 2009

[6] Heckeler, P., Behrend, J., Kropf, T., Ruf, J., Rosenstiel, W.,
Weiss, R. “State-based coverage analysis and UML-driven
equivalence checking for C++ state machines” FM+ AM, Vol.
P-179, pp. 49-62, 2010

[7] Ferreira, R. D., Faria, J. P., Paiva, A. C. “Test coverage analy-
sis of UML state machines”, in Proc. of the 3rd International
Conference on Software Testing, Verification, and Validation
Workshops (ICSTW), pp.284–289, IEEE, 2010

[8] He, W., Zhao, R. “Sequential Pattern Mining Based Test Case
Regeneration”, in IEEE Journal of Software, Vol. 8, no. 12,
pp.3105–3113, 2013.

[9] Alshahwan, N., Harman, M. “State aware test case regenera-
tion for improving web application test suite coverage and fault
detection”, in Proc. of the International Symposium on Soft-
ware Testing and Analysis (ISSTA), pp.1–5, IEEE, 2012.

[10] Khatun, A., Sakib, K. “An automatic test suite regeneration
technique ensuring state model coverage using UML diagrams
and source syntax” in Proc. of the 5th International Confer-
ence on Informatics, Electronics and Vision (ICIEV), pp.88-
93, IEEE, 2016.

[11] Sarma, M., Mall, R. “Automatic test case generation from
UML models”, in Proc. of the 10th International Conference
on Information Technology,(ICIT), pp.196–201, IEEE, 2007.

[12] Mingsong, C., Xiaokang, Q., Xuandong, L. “Automatic test
case generation for UML activity diagrams”, in Proc. of the In-
ternational Workshop on Automation of Software Test (AST),
pp.2–8, ACM, 2006

[13] Eclipse.org - Juno Simultaneous Release, https:
//eclipse.org/juno/, Online accessed: 19 December
2016

[14] JEP - Java Math Expression Parser http://www.cse.msu.
edu/SENS/Software/jep-2.23/doc/website/index.
html Online accessed: 3 September 2017.

[15] javaparser 1.0.9 - Maven Repository http:
//mvnrepository.com/artifact/com.google.code.
javaparser/javaparser/1.0.9”, Online accessed: 19
May, 2016.

[16] Enterprise Architect, http://www.sparxsystems.com/,
Online accessed: 25 August, 2016.

[17] JUnit - About, http://junit.org/ Online accessed: 18
December, 2016.

[18] Experimental Projects https://github.com/Afrina/
Projects Online accessed: 5 September, 2016.

[19] Observer Pattern Object Oriented Design http://www.
oodesign.com/observer-pattern.html Online accessed:
19 December, 2016.

8

https://eclipse.org/juno/
https://eclipse.org/juno/
http://www.cse.msu.edu/SENS/Software/jep-2.23/doc/website/index.html
http://www.cse.msu.edu/SENS/Software/jep-2.23/doc/website/index.html
http://www.cse.msu.edu/SENS/Software/jep-2.23/doc/website/index.html
http://mvnrepository.com/artifact/com.google.code.javaparser/javaparser/1.0.9
http://mvnrepository.com/artifact/com.google.code.javaparser/javaparser/1.0.9
http://mvnrepository.com/artifact/com.google.code.javaparser/javaparser/1.0.9
 http://www.sparxsystems.com/ 
http://junit.org/ 
https://github.com/Afrina/Projects
https://github.com/Afrina/Projects
http://www.oodesign.com/observer-pattern.html
http://www.oodesign.com/observer-pattern.html

	Introduction
	Literature Review
	Coverage Analysis Approaches
	Related Approaches
	Test Case Regeneration Approaches

	An Automatic Test Suite Regeneration Technique for Improving State Model Coverage
	Overview of the Proposed Test Suite Regeneration Technique
	Internal Architecture of the Test Suite Regeneration Technique
	Input Parser Module
	Coverage Computation Module
	Test Regeneration Module


	Implementation And Result Analysis
	Environmental Setup
	Experimental Projects
	Evaluation Metrics
	Result Analysis
	Threats to Validity

	Conclusion
	References

