
International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.1, November 2017

34

Recurrent Neural Network based Prediction of Software

Effort

Lujain A. Hussein
University of Basra, Iraq

Kulood A. Nassar
University of Basra, Iraq

Maysaa A. Naser
University of Basra, Iraq

ABSTRACT

The enormous efforts of software systems and unexpected

efforts in the late phases of software development in software

engineering field led to using methods to estimate software

effort at early stages of software preparing phases. Therefore,

the question remains how can develop an estimation method

to be more accurate and gives a prediction for future software

efforts. This paper presents a proposed method for software

effort prediction, to enhance software effort estimation phase.

The proposed method utilizes feed-forward neural network in

recurrent fashion to make a prediction and adapt to handle

with varying software types in software engineering. The

proposed method (RFFNN) used to enhance the results of

ordinary software effort estimation methods, RFFNN gives

more efficient results by making a prediction for future

software efforts.

General Terms

Software engineering

Keywords

Software efforts estimation, Soft Computing, Recurrent Feed-

Forward Neural Network, Neural Networks, Software effort

prediction.

1. INTRODUCTION
A discipline that called Software engineering (SE), its aim is

solving problems as business problems by designing software

systems and developing it. The world cannot be run without

using the software. Systems that depend on computers are

controlling National infrastructures and most electrical and

other products. The computerizing of manufacturing industry

is needed nowadays. Entertainment like computer games,

music, and television is software intense. Therefore, the value

of software engineering arises for both the national and

international societies. However, physical constraints lack

makes software systems to be complex, expensive to develop,

and difficult to be understandable, so that software systems

have different types, from simple, complex, and worldwide

systems. Measurement and software estimation are important

processes in critical software engineering [1], [2].

Cost estimation considered as an important cost calculation

procedure. It must be complete at the first stages of any

project to determine the involving of functions across the

processes and to avoid exceeding the limits of the available

budget [3], [4]. Projects could be software projects,

construction (building) projects, and many other types. The

calculating process of effort that is needed to build the

software and determine the complexity of it is known as effort

estimation. Incorrect, both underestimates or overestimates of

the effort required, complicate scheduling, and management

result in over budgets and late in the projects. These reasons

represent why effort estimation is somewhat known as sort of

critical part [4], [5].

1.1 Software effort
The effort of software is a forecasting critical process used to

give a real effort amount that is required for software projects

to reach project's completion time. Producing efficient

software project is demanding and its activities are essential

for developing software. It holds good when the process of

development is started to meet today's demands of industry.

Now a software that has lesser time with low cost and good

quality is what people want [11].

1.2 Categories of Effort Estimation
The methods of effort estimation classified into these three

primary categories such as, Analogy based, Algorithmic

method, and Expert judgment [7].

Algorithmic modeling developed by using information of

historical effort which relates to some metrics like size.

Estimation of desired effort is done by that metric. This model

involves using mathematical models as COCOMO.

Expert judgment the expert's experience here is important

and takes the first priority. The accuracy of expert-based

estimation model is low.

Analogy Estimation this technique is practicable when there

are completed projects found in that application domain.

Estimation of the new project cost is done by using an

analogy with same domain completed projects.

Neural Networks NNs are defined as computational tools for

modeling that have an acceptance in several disciplines the

aim is modeling real-world hard problems. ANNs have widely

used for several tasks, like nonlinear control, pattern

classification, function approximation, time series predictions,

and efforts or cost estimation. The idea behind ANNs was

conceived for modeling bio-physiology in the human brain to

understand how it works. The aim was to create models that

have the ability to emulate the process of human reasoning.

Many patches of starting works in NN is done by

physiologists, not engineers [8], [9]. Feed-forward Neural

Networks are the simplest and first type of ANNs. In FFNNs,

as shown in Figure (1), the data always moves in just one

direction, forward from the input nodes, throughout the

hidden nodes then to the output nodes and no loops in that

networks. These networks utilized many neurons (nodes) and

contain no any feedback paths in them. They are the widely

used NNs, particularly in systems and controls. Multilayer

NNs have input layer, hidden layers, and output layer (no

interconnections between the nodes in same layers), they

called a hidden and exist in between two layers, input and also

output layer [10], [11].

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.1, November 2017

35

Fig 1: Feed-Forward Neural Network

2. LITERATURE REVIEW
This section highlights on the past research in the area of

software effort estimation.

J. Maximino and R. Lyne [12], Develop an Artificial Neural

Networks (ANN) model with backpropagation structure for

cost estimation of Philippine building projects. They collected

30 building projects data then divided it randomly to three

sets: 20% used for validating performance, 60% used for

training, and 20% as a network generalization independent

test. Six inputs parameters were used that are a number of

floors, floor area, the number of basements, concrete volume,

formworks area, and reinforcing steel weight.

M. Kumar and S. Abbinaya [13], concentrated on two

techniques, function point and use case points to use them for

estimation. By using decision table, they compare these

methods to test them for acquiring accurate results. Neural

Networks (NN) is applied for decision table training. NNs

have used also for comparing the produced trained efforts

with real effort. Function point and use case points inputs are

trained by the NN algorithm. Decision table represents a place

to store trained inputs.

S. Gotovac and H. Karna [5], Proposed an approach for

improving effort estimation by using NNs as Bayesian

networks (BN). They test major tree's entities in the work

items, the estimation process, and estimators. Analysis

depended on data that is collected from many software

projects which all executed in the Croatian software

corporation. They found BNs is a suitable way in the software

estimation modeling.

Abran, A. Idrii, and A. Hasani [7], Evaluated Radial Basis

Function Neural Network (RBFN) construction based on

fuzzy and hard C-mean clustering algorithm by using the

cross-validation approaches. The important objective of the

study is investigating whether the RBFN model that learned

from training data can estimate efforts of unseen data. they

evaluate it using historical datasets which are ISBSG R8, and

Constructive Cost Model (COCOMO) COCOMO8.

S. Kumar and P. Agrawal [14], Presented a simple software

effort estimating method. They used sufficient minimum

parameters which are easy to be identified at the early time of

a project. To improve estimation accuracy, they introduced

weight factor and calculate it by an expert learning method.

N. Goyal and M. Bisi [15], Proposed a technique with single

layer NN (SLP) that predict software efforts from quality

metrics of software. They used swarm optimization for

training the network and used Principal components analysis

(PCA) for minimizing input features dimensionality, finally,

for optimizing the NN, genetic algorithms are used. A new

architecture of ANN is proposed with additional input layer

used for encoding. This layer is involved before hidden layers.

This new layer used to scale input values of NN.

3. RESEARCH METHODOLOGY
Software effort estimation is an important field in software

engineering, traditional algorithmic methods are not accurate

enough for estimation, however, non-algorithmic methods

appear more accuracy such as feed-forward backpropagation

neural networks. In this paper, recurrent feed forward neural

network is used to predict software effort related to software

development project activities as shown in Fig.(2).

Fig 2: Structure of proposed RFFNN

3.1 Parameters
The inputs of the proposed RFFNN must be selected

dependent on which parameters are affecting on estimation,

the parameters that were used in this proposed method are 12

parameters as follows.

1- Time (Tim.) - Consists of five scales which are very low,

low, medium, high, and very high, it relates to the

execution time of past software projects.

2- Size (siz.) - This parameter used to compute software

size, it has five scales such as very low, low, medium,

high, and very high.

3- Hardware ability (HW.ab.) – This parameter deals with

the hardware aspects that relate the software it scales

such that very old, old, semi-old, modern, and very

modern.

4- Application type (App.typ.)– Contains any types of these

scales Platform and management, education, and

reference, home and entertainment, operations and

professional.

Input Layer Hidden layer Output layer

Tim.

Siz.

HW.ab.

App.typ
.

Prog.tm
.

Comp.

Prog.lng
.

Req.

Prog.typ.

Dev.ab.

Deb.ab.

Doc.

Software Effort
at stage N

Software Effort at stage N-1

Software Effort at stage N-2,...,1

Input Layer Hidden Layer

Layer

Output Layer

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.1, November 2017

36

5- Programmers team (Prog.tm.) – This parameter depends

on the total number of programmers the software and

scales such that very low, low, medium, high, and very

high.

6- Complexity – this parameter depends on this equation.

 (𝑬𝒙. 𝑻𝒊𝒎𝒆 × 𝑵𝒖𝒎. 𝑳𝒊𝒏𝒆) % (1)

Where, ExTime is the execution time and Num.line is the

number of effective lines in the software code and scales such

that very complex, complex, medium, simple, and very

simple.

7- Programming language (Prog.lng.) – This parameter

computed dependent on whether the programming

language that used is old such as basic or C, modern such

as C++ and MATLAB, or Visual languages such as

Visual C++ and Visual Basic.

8- Requirements (Req.) – This parameter depends on

whether the software meets the requirements that are

needed. It divided to available, semi-available, and not

available.

9- Programming type (Prog.typ.) – There are many types of

programming such as structural programming, object-

oriented programming, etc.

10- Development ability (Dev.ab.) – This parameter divided

into two scales which are able to develop, and unable to

develop, it depends on the programmer's decision.

11- Debugging ability (Deb.ab.) – This parameter depends

on staff judgment of programming errors whether it is

able to debug or not.

12- Documentation (Doc.) – This parameter decides whether

the project is able to write as a document or not.

3.2 Working Mechanisms
The proposed RFFNN worked in a recurrent fashion where its

output at stages N-1, N-2, ..., 1 are entered as inputs of its

stage N. Software effort estimation of each software is

depending on software efforts of five similar software of a

previous time. When the network makes the output of

software effort to the first similar software of the target

software, the output is considered as an additional input to the

network with the twelve main inputs. The parameters of the

next similar software to the target software will be entered and

the output of the first similar software will be the 13'th

parameter in the network. The network will give the second

output of software effort and the third output of software

effort is depending on two previous outputs as inputs and so

on. The prediction process is done by taking parameters of

similar software of the main software, the network will learn

with these extra parameters to make a prediction. Computing

the total effort of the parameters as a desired output to the

network is done by the weighted average method as shown in

the equations below. In this method, the twelve parameters

classified into three classes depending on the number of scales

as following:-

Class one - Time, size, hardware ability, application type,

programmers team, and complexity which have five scales.

Class two - Programming language and requirements which

have three scales.

Class three – Development ability, debugging ability,

programming type and documentation which have two scales.

For each class, the following four weighted average equations

are done to compute the desired output.

𝑿𝒊 = 𝑷𝑺𝒊 ∗ 𝑺𝒊 (1)

𝒁𝒊 = 𝑿𝒊 / 𝑷𝑺𝑼𝑴𝒊 (2)

𝑾𝒊 = 𝑷𝑬𝑹𝒊 ∗ 𝒁𝒊 (3)

𝑬 = 𝑾𝒊 (4)

Where,

PS Is the number of parameters in each class.

S Is the number of scales that the parameters have in class (i).

PSUM Is The summation of all scales in each class.

W Is the class weight

PER Is the percentage of each class where, class one is 60%

(0.6), class two is 15% (0.15), and class three is 25% (0.25).

E Is the computed effort.

3.3 Simulation Results
Algorithms of training and testing the proposed RFFNN are

designed using C++ programming language and

backpropagation learning algorithm is used. The proposed

RFFNN is training on 20 different patterns. Training patterns

contain inputs as 12, 13, ..., 16 parameters and desired output

is software efforts. In training stage, 0.9 training factor and

0.5 smoothing factor are used which are selected by trial and

error for giving best convergence and less number of epochs.

Points could be clarified:

- Stage means a one training cycle.

- The output of training stage 1 which is 0.4 becomes an

additional input of training stage 2.

- The output of training stage 2 which is 0.3 with the

output of stage 1 which is 0.4 become additional inputs

in training stage 3.

- The output of training stage 3 which is 0.4 with the

previous outputs of training stage 1 and 2 become

additional inputs in training stage 4.

- The output of training stage 4 which is 0.3 with the

outputs of training stages 1, 2, and 3 become additional

inputs in training stage 5.

- Stage 5 gives the predicted software effort of the

required software that the proposed RFFNN is trained for

it on 5 similar patterns in recurrent fashion.

- Through training stage, the proposed RFFNN reach to

desired output at less error value, and it takes a number

of epochs for that. For example, Fig (3) – shows error

value versus a number of epochs for RFFNN output in

the table (1).

- Testing is applied on proposed RFFNN. For that, it

gives successes rate 100% of 20 training patterns and

success rate 95% of 15 unseen training patterns.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.1, November 2017

37

Table 1: Results of proposed RFFNN

Stage Inputs Output

 Recurrent
Parameters

P1 P2 P3 P4 P5 P6 P7

P8 P9 P10 P11 P12 Software Effort(SE)

1 0 1 3 4 4 3 3 3 3 3 1 2 2 0.4

2 0
0.4

3 2 2 3 1 2 3 2 3 2 2 1 0.3

3 0
0.4
0.3

4 5 5 4 3 3 2 2 1 2 1 2 0.4

4 0
0.4
0.3
0.4

3 4 3 5 2 3 2 1 1 2 2 2 0.3

5 0
0.4
0.3
0.4
0.3

4 3 3 5 2 2 3 1 2 2 2 1 0.3

Where, P1 – P12 is the twelve parameters from Size to Documentation.

Fig 3: Error versus number of epochs of the proposed RFFNN for software effort in Table 1

4. APPLICATION
In this section, the proposed method is applied to a set of

software that used data mining techniques, the affected

parameters are taken from this set of software. This

application worked on a pack of data like data points or image

data where each point is scanned and search for the nearest

neighbour for it, for example, the five nearest neighbour

points are taken for each point, then a line is drawn between

the point and its nearest neighbours this is done for each data

point. It is useful for giving the outlines of the data, for

example, if this data is an image data then the outline for the

image will appear. This application could be used with image

processing and data reduction. The complexity of the

application could be increased as it is developed for complex

requirements, in this case, it will need a good specification

hardware to run on. Figure (4) shows the result of a few

number of data points.

Fig 4: Application results of few data

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.1, November 2017

38

4.1 Applying The Proposed Method on the

Application
The proposed method makes predictions on software efforts

by using RFFNN and taking the effective factors of the

software systems for using them as neural network parameters

as discussed earlier. The twelve parameters are an effective

factor for any software to estimate the total effort which

ranges from very low to very high. In this section, MATLAB

language is used to write the software of application. The

application is developed which makes it more complex on

time, four software is introduced as following for predicting

of the effort of other future software.

 Software one – This software takes a set of data points then

compute the nearest four neighbors and connect each point

with its neighbors as shown in the following code.

Software two – This software is a development where here

the data is an image data, convert it to grayscale and make it

an array of data points then reduce the number of points and

that the most effective points to get image outline which is the

black points only any other grayscale points are discarded.

The nearest five neighbors are selected as shown in the

following code.

Software Three - The software here processes a set of

images, convert it to grayscale then takes only the black data

points and discards other data, makes the points as an array of

data, finally finds the nearest neighbours to each point and

draw lines between each point and its neighbours as shown in

the following code.

Software four – This software processes a set of images,

convert it to grayscale then takes the bold scale of the

grayscale which is between (1-110) then discards other points,

makes data as an array, finally the nearest neighbours to each

point is searched and draw lines between points as shown in

the following code.

Software five – This software takes one image at an

execution but with high grayscale points.

4.2 RFFNN Results of the Application
The parameters after that is extracted from each software as

inputs to RFFNN, recurrent parameters are affected to train

the network for predicting of the effort of new software. Table

(2) shows the results of RFFNN of the application. This table

refers to recurrent stages and the inputs which include

additional inputs and final outputs of the RFFNN. The value

(0.6) in the last line of the table refers to the software effort of

the future software this is a predicted value depends on the

previous software which are of the same specifications in

previous times. Table (3) refers to linguistic values of the

RFFNN inputs and outputs. Where the linguistic value of the

predicted value of software effort of the fifth software (0.6) in

the last line of the table is (above average). The RFFNN is

evaluated using mean square error (MSE) as shown in

equation (5), where the results of the error using MSE

equation is a very small value close to zero.

𝑀𝑆𝐸 =
1

2
 𝑃𝑖 − 𝐴𝑖 2𝑛

𝑖=1 5

Where,

Pi: estimated value for data output i.

Ai: actual value for the output i.

n: the total number of output

Table2: Results of RFFNN of the application0

Stage Inputs Outputs

 Recurrent
parameters

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 Output(SE)

1 0 1 1 3 5 1 1 2 1 1 1 1 1 0.4

2 0
0.4

2 2 3 5 1 3 2 1 1 1 1 1 0.5

3 0
0.4
0.5

4 2 3 5 1 3 2 1 1 2 1 1 0.6

4 0
0.4
0.5
0.6

5 2 4 5 1 4 2 1 1 2 1 1 0.6

5 0
0.4
0.5
0.6
0.6

5 2 3 5 1 4 2 1 1 2 1 1 0.6

Where, P1-P12 is the twelve parameters from Size to Documentation.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.1, November 2017

39

Table 3: Linguistic values of the RFFNN inputs and outputs of the application

Stage Inputs Output

 Rec. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 SE

1 0 Very
Low

Very
Low

Medium Operations One Very
simple

MATLAB Available Structural Able Able Able Below
average
0.4

2 0
0.4

Low Low Medium Operations One Medium MATLAB Available Structural Able Able Able Average
0.5

3 0
0.4
0.5

High Low Medium Operations One Medium MATLAB Available Structural Semi-
able

Able Able Above
average
0.6

4 0
0.4
0.5
0.6

Very
High

Low Old Operations One Medium MATLAB Available Structural Semi-
able

Able Able Above
average
0.6

5 0
0.4
0.5
0.6
0.6

Very
High

Low Medium Operations One Medium MATLAB Available Structural Semi-
able

Able Able Above
average
0.6

Where, P1-P12 is the twelve parameters from Size to Documentation.

5. CONCLUSION
In this paper prediction of software effort is discussed which

is one of software engineering techniques to avoid exceeding

the limits of the available budget and to determine the

involving of functions across the process. Therefore it must be

done in the first stages of any software design. Therefore,

novel methods for software effort prediction by implementing

feed-forward neural networks had been proposed. Since

RFFNN is an effective type of feed-forward neural networks

and through it the best approximation between the desired and

actual output is obtained. This RFFNN is improved from

ordinary FFNN to FFNN in a recurrent fashion to give the

network the ability of prediction of future software effort not

only the effort estimation of the current software. Software

effort prediction process has a significant role in the

performance of software engineering, because of the

performance parameters such as execution time, software size,

hardware ability, application type, programming team,

complexity, programming language, programming type,

development ability, debugging ability, and documentation.

They are affected proportionally when the RFFNN used for

software effort prediction. In the proposed RFFNN, noticed

that the prediction of future software effort is done dependent

on similar software efforts in previous stages. Also when the

number of previous software increased the prediction become

more accurate. RFFNN used the principle of time series to

make predictions where the output of time (t) return as input

in time (t-1) this could use for developing the feed-forward

neural network to feed-forward neural network with a

recurrent fashion. The following works are suggested to be

future works, RFFNN could be used in other software

engineering fields such as predicting for costs in building

projects or the size of any software system. As a future work,

another type of intelligent methods could be used with Neural

Networks and also enhanced such as hybrid systems like the

Neuro-Fuzzy system and also, RFFNN could be optimized by

using genetic algorithms. RFFNN could use the traditional

methods to compute the desired output to network output,

therefore a traditional method as COCOMO could be

enhanced and used for computing the desired output.

6. REFERENCES
[1] I. Marsic, Software Engineering. Rutgers University,

2012.

[2] I. Sommerville, Software Engineering. Pearson, 2010.

[3] S. Waghmode and K. Kolhe, “A Novel Way of Cost

Estimation in Software Project Development Based on

Clustering Techniques,” Int. J. Innov. Res. Comput.

Commun. Eng., vol. 2, no. 4, pp. 3892–3899, 2014.

[4] H. Hamza, a Kamel, and K. Shams, “Software Effort

Estimation Using Artificial Neural Networks: A Survey

of the Current Practices,” Inf. Technol. New Gener.

(ITNG), 2013 Tenth Int. Conf., pp. 731–733, 2013.

[5] H. Karna and S. Gotovac, “Estimating software

development effort using Bayesian networks,” pp. 229–

233, 2015.

[6] P. Kaur and R. Singh, “A Proposed Framework for

Software Effort Estimation Using the Combinational

Approach of Fuzzy Logic and Neural Networks,” Int. J.

Hybrid Inf. Technol., vol. 8, no. 10, pp. 73–80, 2015.

[7] A. Idri, A. Hassani, and A. Abran, “RBFN Networks-

based Models for Estimating Software Development

Effort: A Cross-validation Study,” 2015 IEEE Symp.

Ser. Comput. Intell., vol. 39, no. Ml, pp. 976–983, 2015.

[1] [8] M. T. Hagan, H. B. Demuth, and M. H. Beale,

“Neural Network Design,” Bost. Massachusetts PWS,

vol. 2, p. 734, 1995.

[9] B. Krose and P. Van Der Smagt, An Introduction to

Neural Networks, no. University of Amsterdam. 1996.

International Journal of Computer Applications (0975 – 8887)

Volume 177 – No.1, November 2017

40

[10] M. Kubat, “Neural networks: a comprehensive

foundation by Simon Haykin, Macmillan, 1994, ISBN 0-

02-352781-7.,” The Knowledge Engineering Review,

vol. 13, no. 4. pp. 409–412, 1999.

[11] Laurene V. Fausett, Fundamentals of Neural Networks.

Pearson Education, 1994.

[12] R. C. Lyne and J. C. Maximino, “An Artificial Neural

Network Approach to Structural Cost Estimation of

Building Projects in the Philippines,” Present. DLSU

Res. Congr. 2014, vol. 3, pp. 1–8, 2014.

[13] S. Abbinaya and M. S. Kumar, “Software effort and risk

assessment using decision table trained by neural

networks,” 2015 Int. Conf. Commun. Signal Process., pp.

1389–1394, 2015.

[14] P. Agrawal and S. Kumar, “Early Phase Software Effort

Estimation Model,” 2016 Symp. Colossal Data Anal.

Netw., 2016.

[15] M. Bisi and N. K. Goyal, “Software development efforts

prediction using artificial neural network,” IET Inst. Eng.

Technol., vol. 10, no. 3, pp. 63–71, 2016.

IJCATM : www.ijcaonline.org

