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ABSTRACT 

This paper develops and analyzes a two node tandem 

queueing model with phase type service having time and state 

dependent service rates. Here, it is assumed that the service 

processes of the two service stations follow non-homogenous 

Poisson processes and service rates are dependent on the 

number of customers in the queue connected to it. Using the 

difference-differential equations, the joint probability 

generating function of the queue size distribution is derived. 

The system performance measures such as average number of 

customers in the queue, throughput of the service stations, and 

average waiting time of customers in the queue and in the 

system and the variance of the number of customers in each 

queue are derived. A numerical illustration is presented. The 

sensitivity analysis of the model revealed that the time and 

load dependent service rates have significant influence on 

congestion of queues and waiting time. The transient analysis 

can predict the performance measures more accurately for 

small period of time. This model can also include some of the 

early models as particular cases.   
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1. INTRODUCTION 
Queueing models create lot of interest due to their ready 

applicability in several areas such as communication 

networks, transportation systems, cargo handling and machine 

repair. In queueing models, it is customary to assume that 

arrival and service processes are independent of time. But in 

many practical situations arising at place like 

telecommunications the arrival and service rates are 

dependent on time. Identifying this gap much work has been 

reported in literature regarding queueing models with time 

varying rates. Newell (1968) has studied time-dependent 

arrival rates.  Rothkopf and Oren (1979) have given closure 

approximation for the non-stationary M/M/s queue. Massey et 

al. (1993) have studied networks of infinite- server queues 

with non-stationary Poisson input, queueing systems.  Massey 

and Whitt (1994) have analyzed of the modified offered load 

approximation for the non-stationary Erlang loss model. 

Mandelbaum and Massey (1995) have studied the 

approximation for time dependent queues. Davis et al. have 

(1995) studied the sensitivity to the service time distribution 

in the non-stationary Erlang loss model. William A. Massey 

(1996) has studied stability of queues with time varying rates. 

He analyzed the model using asymptotic method known as 

Uniform acceleration asymptotic behavior carry based on 

fluid and diffusion approximations.  Duffield et al. (2001) 

have analyzed a non-stationary offered load model for packet 

networks.  William A. Massey (2002) has analyzed the queues 

with time varying rates for telecommunication models. He 

also reviewed several woks which support the arguments that 

time dependent behavior has an impact on traffic flow models. 

Ward Whitt (2016) reviewed the recent papers on time 

varying single server queue. In all these papers they analyzed 

the queueing models for time varying arrival and service rates 

using diffusion approximations or Kendal‟s frame work. 

Deviating from this Durga  Aparajitha and Raj Kumar (2014) 

developed single server queueing model with time and state 

dependent service rates using kolomogrov‟s forward equation 

approach. They assumed that the service process follows a 

non-homogeneous Poisson process and depends on number of 

customers in the queue.  

But, in many practical situations, queues in series or tandem 

queues are more important than analysis of single queues. The 

output of one queue becomes the input of other queue in 

tandem queueing models.  For example, in communication 

networks the queues are connected in tandem. Even though 

much work has been reported in communication networks, 

very little work has been reported regarding tandem queueing 

model with time dependent service rates. (Srinivas Rao et al. 

(2000), Srinivas Rao et al. (2009), Srinivas Rao et al. (2011), 

Suhasini et al. (2012), Sadu, A. R. et al. (2017)). In self 

similarity networks the service rates are made time dependent 

in order to reduce congestion in queues and burstness of 

buffer.  

Hence, in this paper we develop and analyze a two node 

tandem queueing model having phase type service with time 

and state depend service rate. Here, it is assumed that the 

arrival process follows Poisson process with parameter λ, and 

service processes follows non-homogeneous Poisson 

processes. Using the kolomogrov‟s forward type equations the 

joint probability generating function of the queue size 

distributions is obtained. The characteristics of queueing 

model such as average number of customers in each queue, 

the utilization of service station, the throughput of the service 

station, average waiting time of the customers and the 

variance of the number of customers in the queue and in the 

system are obtained. A numerical illustration demonstration 

the solution procedure of the model and the sensitivity 

analysis are presented. A comparative study of the model with 

that of homogeneous service rates is also discussed. 

2. QUEUEING MODEL 
In this section, we briefly present the development of the 

queueing model under study. Consider a two node tandem 

queueing model with the following assumptions: 

1) The arrival process follows Poisson process with mean 

arrival rate λ. 

2) The service process follows a non Homogeneous Poisson 

process with mean service rates µ1 (t) =α1+β1t and µ2 (t) 

=α2+β2t.  

3)  It is further assumed that the service rate is dependent on 

the number of customers in the queue. 

4) The Queue discipline is fist-in-first-out. 
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5) The buffer capacity is infinity. 

6) Some customers leave the system after first node some 

other join the queue connected to the second node. 

The schematic diagram representing the queuing model is 

shown in Fig 1 

n1                                                                  n2    

 

λ                                             θ 

                                  𝜋 

 

Fig 1 schematic diagram of the queueing model. 

Let n1 and n2 denote the number of customers in the first and 

second queues and  𝑃𝑛1 ,𝑛2
 𝑡  be the probability that there are 

n1 customers in the first queue and n2 customers in the second 

queue at time t.  

The difference-differential equations governing the model are: 

𝜕𝑃𝑛1 ,𝑛2
(𝑡)

𝜕𝑡
= − 𝜆 + 𝑛1𝜇1 𝑡 + 𝑛2𝜇2 𝑡  𝑃𝑛1 ,𝑛2

 𝑡    

                        +𝜆𝑃𝑛1−1,𝑛2
 𝑡 +  𝑛1 + 1 𝜇1 𝑡 𝜃𝑃𝑛1+1,𝑛2−1 𝑡  

                       + 𝑛1 + 1 𝜇1 𝑡 𝜋𝑃𝑛1+1,𝑛2
 𝑡         ∀  𝑛1,𝑛2 > 0 

 
𝜕𝑃𝑛1 ,0(𝑡)

𝜕𝑡
= − 𝜆 + 𝑛1𝜇1 𝑡  𝑃𝑛1 ,0 𝑡 + 𝜆𝑃𝑛1−1,0 𝑡  

                    + 𝑛1 + 1 𝜇1 𝑡 𝜋𝑃𝑛1+1,0 𝑡 + 𝜇2 𝑡 𝑃𝑛1 ,1 𝑡  ; 

                                            ∀  𝑛1 > 0,𝑛2 = 0 

 
𝜕𝑃0, 𝑛2

 𝑡 

𝜕𝑡
= − 𝜆 + 𝑛2𝜇2 𝑡  𝑃0,𝑛2

 𝑡 + 𝜇1 𝑡 𝜃𝑃1, 𝑛2−1 𝑡  

                    +𝜇1 𝑡 𝜋𝑃1,𝑛2
 𝑡 +  𝑛2 + 1 𝜇2 𝑡 𝑃0,𝑛2+1 𝑡  ; 

                                                ∀  𝑛1 = 0,𝑛2 > 0 

 
𝜕𝑃0,0 𝑡 

𝜕𝑡
= −𝜆𝑃0,0 𝑡 + 𝜇1 𝑡 𝜋𝑃1,0 𝑡 + 𝜇2 𝑡 𝑃0,1 𝑡  ; 

                                                         ∀  𝑛1 = 0,𝑛2 = 0                (1)
     

probability generating function of 𝑃𝑛1 ,𝑛2
 𝑡   be 

𝑃 𝑆1 , 𝑆2 , 𝑡 =   𝑃𝑛  1 ,𝑛2
(𝑡)𝑠1

𝑛1𝑠2
𝑛2

∞

𝑛2=0

                           (2)

∞

𝑛1=0

 

Multiplying the equation (1) with  𝑠1
𝑛1 , 𝑠2

𝑛2   and summing over 

all  𝑛1,𝑛2  we get 

 𝜕𝑃(𝑡)

𝜕𝑡
= −    𝜆 + 𝑛1𝜇1 𝑡 + 𝑛2𝜇2 𝑡  𝑃𝑛  1 ,𝑛2

 𝑡 

∞

𝑛2=0

 𝑠1
𝑛1  

∞

𝑛1=0

 

    𝑠2
𝑛2 +   𝜆

∞

𝑛2=0

  

∞

𝑛1=0

𝑃𝑛  1−1,𝑛2
 𝑡 𝑠1

𝑛1𝑠2
𝑛2  

 

+    𝑛1 + 1 

∞

𝑛2=0

∞

𝑛1=0

𝜇1 𝑡 𝜃𝑃𝑛1+1,𝑛2−1 𝑡 𝑠1
𝑛1𝑠2

𝑛2  

+    𝑛1 + 1 

∞

𝑛2=0

∞

𝑛1=0

𝜇1 𝑡 𝜋𝑃𝑛1+1,𝑛2
 𝑡 𝑠1

𝑛1𝑠2
𝑛2  

+    𝑛2 + 1 

∞

𝑛2=0

∞

𝑛1=0

𝜇2 𝑡 𝑃𝑛1 ,𝑛2+1 𝑡 𝑠1
𝑛1𝑠2

𝑛2  ;  ∀  𝑛1,𝑛2  (3) 

Substituting π = (1-θ) simplifying, we get 

 
 𝜕𝑃 𝑆1 , 𝑆2 , 𝑡 

𝜕𝑡
= 𝜇1 𝑡  1 − 𝜃 − 𝑠1 + 𝜃𝑠2 

𝜕𝑃 𝑠1, 𝑠2, 𝑡 

𝜕𝑠1
 

        +𝜇2 𝑡  1− 𝑠2 
𝜕𝑃(𝑠1, 𝑠2, 𝑡)

𝜕𝑠2
− 𝜆 1 − 𝑠1 𝑃 𝑠1, 𝑠2 , 𝑡    (4) 

 

Solving the equation (4) by Lagrangian‟s method, the 

auxiliary equations are:   

 𝑑𝑡

1
=

𝑑𝑠1

−𝜇1 𝑡  1 − 𝜃 − 𝑠1 + 𝜃𝑠2 
=

𝑑𝑠2

−𝜇2 𝑡  1 − 𝑠2 

=
𝑑𝑃

−𝜆 1 − 𝑠1 𝑃 𝑠1, 𝑠2 , 𝑡 
                        (5) 

Considering the service rate is linear and time dependent and 

they are of the form,  

 

  𝜇1 𝑡 = 𝛼1 + 𝛽1 𝑡 ;   0 ≤ 𝛽1 ≤ 1     

𝑎𝑛𝑑  𝜇2 𝑡 = 𝛼2 + 𝛽2 𝑡 ;   0 ≤ 𝛽2 ≤ 1, 𝛼1 ≠ 𝛼2. 

 

Solving the first and third terms in equation (5), we get 

 𝑎 = (𝑠2 − 1)𝑒− 𝜇2(𝑡)𝑑𝑡   

 Solving the first and second terms in equation (5), we get 

          𝑏 = 𝑠1𝑒
− 𝜇1 𝑡 𝑑𝑡 +  𝑠2 − 1 𝑒− 𝜇2 𝑡 𝑑𝑡𝜃 

                  

    𝜇1 𝑡 𝑒
  𝜇2 𝑡 −𝜇1 𝑡  𝑑𝑡𝑑𝑡 + 𝜇1(𝑡) 𝑒− 𝜇1(𝑡)𝑑𝑡𝑑𝑡 

 

Solving the first and fourth terms in the equation (5), we get 

𝑐 = 𝑃 𝑠1, 𝑠2, 𝑡 𝑒𝑥𝑝 −𝜆  𝑠1𝑒
− 𝜇1(𝑡)𝑑𝑡 +  𝑠2 − 1 𝑒− 𝜇2 𝑡 𝑑𝑡     

        𝜃    𝜇1 𝑡 𝑒
  𝜇2 𝑡 −𝜇1 𝑡  𝑑𝑡𝑑𝑡  +   𝜇1(𝑡) 𝑒− 𝜇1(𝑡)𝑑𝑡𝑑𝑡  

         𝑒− 𝜇1(𝑡)𝑑𝑡𝑑𝑡 −  𝑠2 − 1 𝑒− 𝜇2 𝑡 𝑑𝑡𝜃   𝑒 𝜇1(𝑡)𝑑𝑡   

           𝜇1 𝑡 𝑒
  𝜇2 𝑡 −𝜇1 𝑡  𝑑𝑡𝑑𝑡 𝑑𝑡 +  −𝑒− 𝜇1(𝑡)𝑑𝑡  

            𝜇1(𝑡) 𝑒− 𝜇1(𝑡)𝑑𝑡𝑑𝑡 𝑑𝑡 − 𝑡   

Where, a, b and c are arbitrary constants. Using the initial 

conditions 

 𝑃00 0 = 1,𝑃00 𝑡 = 0  ∀𝑡 > 0 

The  general  solution  of  (5) gives the probability generating  

function  of  the  number  of  customers  in  the  first queue 

and the number of customers in the second queue at time „t‟ is 

𝑃 𝑠1, 𝑠2, 𝑡 = 𝑒𝑥𝑝 𝜆  (𝑠1−1)𝑒
− 𝛼1𝑡+𝛽1

𝑡2

2
     𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣
𝑡

0

  

                       −
1

𝛼1
 + 𝜃 𝑠2 − 1 𝑒

− 𝛼2𝑡+𝛽1
𝑡2

2
 
 

               
1

𝛼2−𝛼1
−
 (𝛼1+𝛽1𝑣)𝑒

 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 
𝑣2

2 𝑑𝑣
𝑡

0

𝛼1
 + 𝜃 𝑠2 − 1  

                   𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 (𝛼1 + 𝛽1𝑣)
𝑡

0

𝑡

0

  

µ1(t)   

     

µ1 

(t) 

µ1 

(t) 

   µ1 

(t) 

 

µ2(t) 
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                  𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑𝑣 −  𝑒𝛼1𝑣+𝛽1
𝑣2

2

𝑡

0

 

                    (𝛼1 + 𝛽1𝑣)𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑
𝑡

0

𝑣 𝑑𝑣 −  
1

𝛼2
    

                                                                                             (6) 
 

3. CHARACTERISTIES OF THE  

     QUEUEING MODEL: 

Expanding   𝑃 𝑠1, 𝑠2 , 𝑡  given in equation (6) and collecting  

the constant terms,  we  obtain  the  probability  that  the  

queue is  empty  as 

𝑃0,0 𝑡 = 𝑒𝑥𝑝  −𝜆𝜃   𝑒
− 𝛼1𝑡+𝛽1

𝑡2

2
    

                   𝑒𝛼1𝑣+𝛽1
𝑣2

2 𝑑𝑣   −
1

𝛼1
 

𝑡

0

  + 𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 
 

                 
1

𝛼2−𝛼1
−
 (𝛼1 + 𝛽1𝑣)𝑒

 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 
𝑣2

2 𝑑𝑣
𝑡

0

𝛼1
  

                +  𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣  (𝛼1 + 𝛽1𝑣)
𝑡

0

𝑡

0
  

             𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑𝑣 −  𝑒𝛼1𝑣+𝛽1
𝑣2

2

𝑡

0

  (𝛼1 + 𝛽1𝑣)
𝑡

0

  

                   𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑𝑣 𝑑𝑣   −  
1

𝛼2
                   (7) 

                 

Taking s2=1 in 𝑃 𝑠1, 𝑠2, 𝑡 , we obtain the probability 

generating function of the first queue size as 

𝑃 𝑠1,𝑡 = 𝑒𝑥𝑝  𝜆(𝑠1 − 1)𝑒
− 𝛼1𝑡+𝛽1

𝑡2

2
   

               𝑒𝛼1𝑣+𝛽1
𝑣2

2 𝑑𝑣 −
1

𝛼1

𝑡

0

 ;         𝜆 < 𝛼1,𝛽1               (8) 

By expanding P (s1, t) and collect the constant terms, we 

obtain the probability that the first queue is empty as 

𝑃0. 𝑡 = 𝑒𝑥𝑝 −𝜆𝑒
− 𝛼1𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 −
1

𝛼1

𝑡

0

   (9) 

The mean number of customers in the first system is 

𝐿1 𝑡 = 𝜆𝑒
− 𝛼1𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 −
1

𝛼1

𝑡

0

                  (10) 

The utilization of the first service station is 

𝑈1 𝑡 = 1 − 𝑒𝑥𝑝 −𝜆𝑒
− 𝛼1𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 −
1

𝛼1

𝑡

0

   

                                                                                            (11) 

The throughput of the first service station is 

𝑇h𝑃1 𝑡 =  𝛼1 + 𝛽1𝑡  1− 𝑒𝑥𝑝                    

                  −𝜆𝑒
− 𝛼1𝑡+𝛽1

𝑡2

2
    𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣  −
1

𝛼1
 

𝑡

0

        (12) 

The average waiting time of a customer in the first system is 

𝑊1 𝑡 =
𝐿1(𝑡)

𝑇h𝑃1 𝑡 
  

           

=

𝜆𝑒
− 𝛼1𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 −
1
𝛼1

𝑡

0
 

 𝛼1 + 𝛽1𝑡  1− 𝑒𝑥𝑝 −𝜆𝑒
− 𝛼1𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 −
1
𝛼1

𝑡

0
    

 

                                                                                            (13) 

The variance of the number of customer in the first system is 

𝑉1 𝑡 = 𝜆𝑒
− 𝛼1𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 −
1

𝛼1

𝑡

0

                  (14) 

The coefficient  of  variation  of  the  number  of  customers  

in  the first  system  is  

𝐶𝑉1 𝑡 =  𝜆𝑒
− 𝛼1𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 −
1

𝛼1

𝑡

0

  

−1
2 

∗ 100                                                         (15) 

 

Taking s1=1 in 𝑃 𝑠1, 𝑠2, 𝑡 we obtain the probability generating 

function for the second queue size as 

𝑃 𝑠2, 𝑡 = 𝑒𝑥𝑝 𝜆𝜃   𝑠2 − 1 𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 
 

1

𝛼2−𝛼1

    

                  −  
 (𝛼1 + 𝛽1𝑣)𝑒

 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 
𝑣2

2 𝑑𝑣
𝑡

0

𝛼1
 +  𝑠2 − 1  

                   𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 (𝛼1 + 𝛽1𝑣)
𝑡

0

𝑡

0

  

    𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑𝑣 −  𝑒𝛼1𝑣+𝛽1
𝑣2

2
𝑡

0
 

              (𝛼1 + 𝛽1𝑣)𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑
𝑡

0

𝑣 𝑑  𝑣 −  
1

𝛼2
    

                    𝜆 < 𝑚𝑖𝑛 𝛼1 + 𝛽1𝑡 ,  𝛼2 + 𝛽2𝑡                          (16) 

By expanding P (s2, t) and collect the constant terms, we 

obtain the probability that the second queue is empty as 

𝑃.0 𝑡 = 𝑒𝑥𝑝 𝜆𝜃  𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 

  
1

𝛼2−𝛼1

    

               −  
 (𝛼1 + 𝛽1𝑣)𝑒

 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 
𝑣2

2 𝑑𝑣
𝑡

0

𝛼1
  

                𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 (𝛼1 + 𝛽1𝑣)
𝑡

0

𝑡

0

  

                𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑𝑣 −  𝑒𝛼1𝑣+𝛽1
𝑣2

2

𝑡

0

 

                (𝛼1 + 𝛽1𝑣)𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑
𝑡

0

𝑣 𝑑  𝑣 −  
1

𝛼2
      

                                                                                          (17)    

The mean number of customers in the second system is 

𝐿2 𝑡 = 𝜆𝜃𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 

  
1

𝛼2−𝛼1

  

          −  
 (𝛼1 + 𝛽1𝑣)𝑒

 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 
𝑣2

2 𝑑𝑣
𝑡

0

𝛼1
  

         +𝜆𝜃𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 (𝛼1 + 𝛽1𝑣)
𝑡

0

𝑡

0
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          𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑𝑣 −  𝑒𝛼1𝑣+𝛽1
𝑣2

2

𝑡

0

 

           (𝛼1 + 𝛽1𝑣)𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑
𝑡

0
𝑣 𝑑𝑣 −

1

𝛼2
        (18)  

The utilization of the second service station is 

𝑈2 𝑡 = 1− 𝑒𝑥𝑝 𝜆𝜃  𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 

  
1

𝛼2−𝛼1

    

              −  
 (𝛼1 + 𝛽1𝑣)𝑒

 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 
𝑣2

2 𝑑𝑣
𝑡

0

𝛼1
  

             𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 (𝛼1 + 𝛽1𝑣)
𝑡

0

𝑡

0

  

             𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑𝑣 −  𝑒𝛼1𝑣+𝛽1
𝑣2

2

𝑡

0

 

       (𝛼1 + 𝛽1𝑣)𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑
𝑡

0

𝑣 𝑑  𝑣 −  
1

𝛼2
     (19) 

The throughput of the second service station is 

𝑇ℎ𝑃2 𝑡 =   𝛼2 + 𝛽2𝑡  

                   1− 𝑒𝑥𝑝 𝜆𝜃  𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 

  
1

𝛼2−𝛼1

     

                −  
 (𝛼1 + 𝛽1𝑣)𝑒

 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 
𝑣2

2 𝑑𝑣
𝑡

0

𝛼1
  

                  𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 (𝛼1 + 𝛽1𝑣)
𝑡

0

𝑡

0

  

                   𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑𝑣 −  𝑒𝛼1𝑣+𝛽1
𝑣2

2

𝑡

0

 

     (𝛼1 + 𝛽1𝑣)𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑
𝑡

0

𝑣 𝑑  𝑣 −  
1

𝛼2
      (20) 

The average waiting time of a customer in the second system 

is 

2
2

2

L (t)
W (t)

Thp (t)


  

where, L2 (t) and Thp2 (t) are as given in equations (18) and 

(20) respectively.         

                               (21) 

The variance of the number of customer in the second system 

is 

𝑉2 𝑡 = 𝜆𝜃𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 

  
1

𝛼2−𝛼1

  

               −  
 (𝛼1 + 𝛽1𝑣)𝑒

 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 
𝑣2

2 𝑑𝑣
𝑡

0

𝛼1
  

                +𝜆𝜃𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 (𝛼1 + 𝛽1𝑣)
𝑡

0

𝑡

0

  

          𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑𝑣 −  𝑒𝛼1𝑣+𝛽1
𝑣2

2

𝑡

0

 

           (𝛼1 + 𝛽1𝑣)𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑
𝑡

0
𝑣 𝑑𝑣 −

1

𝛼2
        

                                                                                              (22) 

The coefficient  of  variation  of  the  number  of  customers  

in  the second  system  is  

𝐶𝑉2 𝑡 =  𝜆𝜃𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
    

1

𝛼2−𝛼1

  

                  −  
 (𝛼1 + 𝛽1𝑣)𝑒

 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 
𝑣2

2 𝑑𝑣
𝑡

0

𝛼1
  

                    +𝜆𝜃𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 (𝛼1 + 𝛽1𝑣)
𝑡

0

𝑡

0

  

                    𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑𝑣 −  𝑒𝛼1𝑣+𝛽1
𝑣2

2

𝑡

0

 

                     (𝛼1 + 𝛽1𝑣)𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑
𝑡

0

𝑣 𝑑𝑣

−
1

𝛼2
  

−1
2 

∗ 100                                 (23) 

                                                                                                                                                         

The mean number of customers in the queueing system at 

time t is 

𝐿 𝑡 = 𝐿1(𝑡) + 𝐿2(𝑡)  

          = 𝜆𝑒
− 𝛼1𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 −
1

𝛼1

𝑡

0

  

            𝜆𝜃𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 

  
1

𝛼2−𝛼1

  

             −  
 (𝛼1 + 𝛽1𝑣)𝑒

 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 
𝑣2

2 𝑑𝑣
𝑡

0

𝛼1
  

                +𝜆𝜃𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 (𝛼1 + 𝛽1𝑣)
𝑡

0

𝑡

0

  

                𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑𝑣 −  𝑒𝛼1𝑣+𝛽1
𝑣2

2

𝑡

0

 

           (𝛼1 + 𝛽1𝑣)𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑
𝑡

0

𝑣 𝑑𝑣 −
1

𝛼2
    (24) 

The variance of the number of customers in the entire system 

is 

𝑉 𝑡 = 𝜆𝑒
− 𝛼1𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 −
1

𝛼1

𝑡

0

  

            𝜆𝜃𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 

  
1

𝛼2−𝛼1

  

             −  
 (𝛼1 + 𝛽1𝑣)𝑒

 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 
𝑣2

2 𝑑𝑣
𝑡

0

𝛼1
  

            +𝜆𝜃𝑒
− 𝛼2𝑡+𝛽1

𝑡2

2
 
  𝑒𝛼1𝑣+𝛽1

𝑣2

2 𝑑𝑣 (𝛼1 + 𝛽1𝑣)
𝑡

0

𝑡

0

  

            𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑𝑣 −  𝑒𝛼1𝑣+𝛽1
𝑣2

2

𝑡

0

 

           (𝛼1 + 𝛽1𝑣)𝑒
 𝛼2−𝛼1 𝑣+ 𝛽2−𝛽1 

𝑣2

2 𝑑
𝑡

0

𝑣 𝑑𝑣 −
1

𝛼2
     (25) 

4. NUMERICAL ILLUSTRATION AND 

SENSITIVITY ANALYSIS  
In this section, the performance of the proposed queueing 

model is discussed through numerical illustration. Different 

values of the parameters are considered for service rates and 

arrivals of customers. The  transient  behavior  of  the  model  

is  studied  by  computing  the  performance  measures  with  

the  following  sets  of  values  for  the  model  parameters: 
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  t = 0.14, 0.16, 0.18, 0.2;   λ = 3, 4, 5, 6, 7;    α1 = 8, 8.4, 8.8, 

9.2, 9.6; β1 = 5, 10, 15, 20, 25;     α2=10, 10.4, 10.8, 11.2, 11.6; 

and β2 = 10, 15, 20, 25, 30 

 The probability  of  emptiness  of  the  queue,  the  mean  

number  of  customers,  the  utilization  of  service  station,  

the  throughput  of  the  service  station,  the  variance  of  the  

number  of  customers  in  the  system,  and  the  coefficient  

of  variation  of  the  number  of  customers  in the  system are  

computed,  for different values of the  parameters  t, λ, α1, β1, 

α2, β2, and θ  are  presented in Table 1 

From Table 1, it is observed that as time (t) varies from 0.14 

to 0.20, the probability of emptiness of the queue 

 

Table 1 

Values of P00 (t), P0. (t), P.0 (t), L1 (t), L2 (t) for different values of parameters 

 

t λ 𝛼1 𝛽1 𝛼2 𝛽2 θ π 𝑃00(𝑡) 𝑃0.(𝑡) 𝑃.0(𝑡) L1(t) L2(t) L(t) 

0.14 3 8 5 10 10 0.1 0.9 0.86547 0.87881 0.98483 0.12919 0.02871 0.1579 

0.16        0.84033 0.84918 0.98957 0.16348 0.02114 0.18462 

0.18        0.81969 0.82535 0.99314 0.19194 0.01532 0.20726 

0.20        0.8028 0.80621 0.99577 0.21541 0.01089 0.2263 

 4       0.74612 0.75035 0.99437 0.28722 0.01451 0.30173 

 5       0.69345 0.69836 0.99296 0.35902 0.01814 0.37716 

 6       0.64449 0.64997 0.99156 0.43082 0.02177 0.45259 

 7       0.59894 0.60494 0.99016 0.50263 0.0254 0.52803 

  8.4      0.59236 0.60466 0.97966 0.50309 0.03606 0.53915 

  8.8      0.58312 0.60547 0.96308 0.50175 0.05313 0.55488 

  9.2      0.56565 0.60714 0.93166 0.49899 0.0863 0.58529 

  9.6      0.51498 0.60951 0.8449 0.4951 0.18405 0.67915 

   10     0.5251 0.62134 0.8451 0.47587 0.1831 0.65897 

   15     0.53486 0.63277 0.84527 0.45764 0.18361 0.64125 

   20     0.54428 0.64381 0.8454 0.44035 0.18346 0.62381 

   25     0.55335 0.65446 0.8455 0.42394 0.18334 0.60728 

    10.4    0.61328 0.65446 0.93708 0.42394 0.07876 0.5027 

    10.8    0.63386 0.65446 0.96852 0.42394 0.04423 0.46817 

    11.2    0.64386 0.65446 0.98379 0.42394 0.02723 0.45117 

    11.6    0.64954 0.65446 0.99248 0.42394 0.01726 0.4412 

     15   0.65037 0.65446 0.99374 0.42394 0.01507 0.43901 

     20   0.6511 0.65446 0.99486 0.42394 0.01311 0.43705 

     25   0.65175 0.65446 0.99585 0.42394 0.01135 0.43529 

     30   0.65233 0.65446 0.99674 0.42394 0.00978 0.43372 

      0.2 0.8 0.6502 0.65446 0.99349 0.42394 0.01955 0.44349 

      0.3 0.7 0.64808 0.65446 0.99024 0.42394 0.02933 0.45327 

      0.4 0.6 0.64597 0.65446 0.98701 0.42394 0.03911 0.46305 

      0.5 0.5 0.64386 0.65446 0.98379 0.42394 0.04888 0.47282 

 

 

decreases from 0.86547 to 0.8028. The probability that the 

emptiness of the first queue decreases from 0.87881 to 

0.80621 and the probability that the emptiness of the second 

queue increases from 0.98483 to 0.99577. The mean number 

of customers in first queue increases from 0.12919 to 0.21541, 

and in second queue decreases from 0.02871 to 0.01089, 

when all other parameters are fixed. The probability of 

emptiness of the system is highly sensitive with respect to 

time. 

It is further observed  that as the arrival rate (λ) changes from 

4 to 7, the  probability  of  emptiness  of  the system, first and 

second queues decrease from 0.74612 to 0.59899, 0.75035 to 

0.60494 and  0.99437 to 0.99016 respectively,  the  mean  

number  of  customers  in system, first  and second queue 

increase from 0.28722 to 0.50263,  0.01451 to 0.0254, and 

0.30173 to 0.52803 respectively, when  all  other  parameters  

are  fixed. 

 It is  observed   that as the service rate parameter (α1) varies 

from 8.4 to 9.6, the probability of emptiness of the  system 

and second queue decrease from 0.59236 to 0.51498 and 

0.99016 to 0.8449 respectively, the probability that the 

emptiness of the first queue increases from 0.60466 to 

0.60951, the mean number of customers in first queue 

decreases from 0.50309 to0.4951, and in second queue and in 

the system it increase from 0.03606 to 0.18405 and 0.53915 to 

0.67915 respectively, when all other parameters are fixed. It is 

also observed that as the service rate parameter (β1) varies 

from 10 to 25, the probability of emptiness of the system, first 

and second queues increase from 0.5251 to 0.55335, 0.62134 

to 0.65446 and 0.8451 to 0.8455 respectively, the mean 

number of customers in the system, first and second queues 

decrease from 0.65897 to 0.60728, 0.47587 to 0.42394 and 

0.18381 to 0.18334 respectively, when all other parameters 

are fixed. 

It is observed   that as the service rate parameter (α2) increases 

from 10.4 to 11.6, the probability of emptiness of the system 

and second queue increase from 0.61328 to 0.64954 and 

0.93708 to 0.99248 respectively and in the first queue it 

remains constant. The mean number of customers in second 

queue decreases from 0.07876 to 0.01726, but in the first 

queue it remains constant, when all other parameters are 
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fixed. It is also observed   that as the service rate parameter 

(β2) increases from 15 to 30, the probability of emptiness of 

the first queue increase from 0.65037to 0.65233; the mean 

number of customers in second queue decreases from 0.01507 

to 0.00978, but in the first queue it remains constant, when all 

other parameters are fixed. 

It is also observed   that as the service rate parameter (θ) 

increases from 0.2 to 0.5, the probability of emptiness of in 

the second queue decreases from 0.99349 to 0.98379.   The 

mean number of customers in second queue increases from 

0.01955 to 0.04888, but in the first queue it remains constant, 

when all other parameters are fixed. 

 

Table 2 

Values of U1 (t), U2 (t), Thp1 (t), Thp2 (t), W1 (t), W2 (t) for different values of parameters 

 

t λ  𝛼1 𝛽1 𝛼2 𝛽2 θ π U1(t) U2(t) Thp1(t) Thp2(t) W1(t) W2(t) 

0.14 3 8 5 10 10 0.1 0.9 0.12119 0.01517 1.05437 0.17299 0.12253 0.08839 

0.16        0.15082 0.01043 1.3272 0.12098 0.12318 0.08666 

0.18        0.17465 0.00686 1.55435 0.08099 0.12349 0.08504 

0.20        0.19379 0.00423 1.74412 0.05075 0.12351 0.08351 

 4       0.24965 0.00563 2.24685 0.06762 0.12783 0.08357 

 5       0.30164 0.00704 2.71476 0.08446 0.13225 0.08363 

 6       0.35003 0.00844 3.15024 0.10128 0.13676 0.08369 

 7       0.39506 0.00984 3.55555 0.11808 0.14136 0.08375 

  8.4      0.39534 0.02034 3.71618 0.2441 0.13538 0.08419 

  8.8      0.39453 0.03692 3.86642 0.44301 0.12977 0.08491 

  9.2      0.39286 0.06864 4.00716 0.82005 0.12453 0.08632 

  9.6      0.39049 0.1551 4.13916 1.86119 0.11961 0.09055 

   10     0.37866 0.1549 4.39244 1.85874 0.10834 0.09054 

   15     0.36723 0.15473 4.62707 1.85677 0.09891 0.09053 

   20     0.35619 0.1546 4.84417 1.85522 0.0909 0.09053 

   25     0.34554 0.15456 5.04482 1.85405 0.08403 0.09052 

    10.4    0.34554 0.06292 5.04482 0.78022 0.08403 0.08329 

    10.8    0.34554 0.03148 5.04482 0.40297 0.08403 0.07938 

    11.2    0.34554 0.01621 5.04482 0.21392 0.08403 0.07638 

    11.6    0.34554 0.00752 5.04482 0.10231 0.08403 0.07381 

     15   0.34554 0.00626 5.04482 0.09145 0.08403 0.06871 

     20   0.34554 0.00514 5.04482 0.08022 0.08403 0.06427 

     25   0.34554 0.00415 5.04482 0.06883 0.08403 0.06037 

     30   0.34554 0.00326 5.04482 0.05742 0.08403 0.05691 

      0.2 0.8 0.34554 0.00651 5.04482 0.11465 0.08403 0.057 

      0.3 0.7 0.34554 0.00976 5.04482 0.17169 0.08403 0.0571 

      0.4 0.6 0.34554 0.01299 5.04482 0.22854 0.08403 0.05719 

      0.5 0.5 0.34554 0.01621 5.04482 0.28522 0.08403 0.05728 

 

 

From Table 2, as time (t) varies from 0.14 to 0.20, the 

utilization of first service station, the throughput of first 

service station, and the average waiting time of a customers in 

first queue increase from 0.12119 to0.19379, 1.05437 to 

1.74412 and 0.12253 to0.12351 respectively. But in second 

queue they decrease from 0.01517 to 0.00423, 0.17299 to 

0.05075 and 0.08839 to 0.08351 respectively, when all other 

parameters are fixed. It is observed that the utilization of the 

service stations, throughput of the service stations, and the 

waiting time of a customer in each queue are highly sensitive 

with respect to time. 

It is further observed   that as the arrival parameter (λ) varies 

from 4 to 7, the utilization of service station, the throughput of 

service station, the average waiting time of a customers in 

first and second queues increase from 0.24965 to 0.39506, 

0.00563 to 0.00984, 2.24685 to 3.5555, 0.06762 to 0.11808, 

0.12783 to 0.14136, 0.08357 to 0.08375 respectively, when all 

other parameters are fixed. It is also observed that as the 

service rate parameter (α1) varies from 8.4 to 9.6, the 

utilization of first service station decreases from 0.39534 to 

0.39049, and in the second service station it increases from 

0.02034 to 0.1551. The throughput of first and second service 

stations increase from 3.71618 to 4.13916 and 0.2441 to 

1.86119 respectively. The average waiting time of a 

customers in first queue decreases from 0.13538 to 0.11961, 

and in second queue increases from 0.08419 to 0 .09055, 

when all other parameters are fixed. It is also observed that as 

the service rate parameter (β1) increases from 10 to 25, the 

utilization of first and second service stations decrease from 

0.37866 to 0.34554 and 0.1549 to 0.1545 respectively. The 

throughput of first service station increases from 4.39244 to 

5.04482 and in second service station decreases from 1.85874 

to 1.85405. The average waiting time of a customers in first 

and second queues decrease from 0.10834 to 0.08403 and 

0.09053 to 0.09052, respectively, when all other parameters 

are fixed. 

It is also observed   that as the service rate parameter (α2) and 

(β2) varies the utilization of second service station decreases, 

the throughput of second of service station decreases, the 

average waiting time of customers in second queue decrease. 

With respect to the variations in α2 and β2 the performance 

measures remains constant in the first queue, when all other 

parameters are fixed. 
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It is also observed   that as the service rate parameter (θ) 

increases, the utilization of service station in second queue 

increases from 0.00651 to 0.01621.  The throughput of second 

service station increases from 0.11465 to 0.28522, the average 

waiting time of customers in second queue increases from 

0.057 to 0.05728, when all other parameters are fixed. 

From Table 3, as time (t) varies from 0.14 to 0.2; the variance 

of the number of customers in first queue increases from 

0.12919 to 0.21541, and in second queue  it decreases from 

0.02871 to 0.01089, and in the system it increases from 

0.1579 to 0.2263. The coefficient of variation of number of 

customers in first queue decreases from 278.21997 to 

215.45922, and in second queue it increases from 808.68511 

to 1536.11 when all other parameters are fixed.  

 

Table 3 

Values of V1(t), V2(t), Cv1(t), Cv2(t) for different values of parameters 

t λ  𝛼1 𝛽1 𝛼2 𝛽2 θ π V1(t) V2(t) V(t) Cv1(t) Cv2(t) 

0.14 3 8 5 10 10 0.1 0.9 0.12919 0.02871 0.1579 278.21997 808.68511 

0.16        0.16348 0.02114 0.18462 247.32313 976.63225 

0.18        0.19194 0.01532 0.20726 228.25171 1204.97 

0.20        0.21541 0.01089 0.2263 215.45922 1536.11 

 4       0.28722 0.01451 0.30173 186.59316 1330.31 

 5       0.35902 0.01814 0.37716 166.894 1189.87 

 6       0.43082 0.02177 0.45259 152.35268 1086.19 

 7       0.50263 0.0254 0.52803 141.05117 1005.62 

  8.4      0.50309 0.03606 0.53915 140.98691 697.56173 

  8.8      0.50175 0.05313 0.55488 141.17389 515.59868 

  9.2      0.49899 0.0863 0.58529 141.5639 375.86408 

  9.6      0.4951 0.18405 0.67915 142.12016 243.58641 

   10     0.47587 0.1831 0.65897 144.96189 243.76125 

   15     0.45764 0.18361 0.64125 147.82094 243.90218 

   20     0.44035 0.18346 0.62381 150.69582 244.01304 

   25     0.42394 0.18334 0.60728 153.58502 244.09731 

    10.4    0.42394 0.07876 0.5027 153.58502 392.26925 

    10.8    0.42394 0.04423 0.46817 153.58502 559.11726 

    11.2    0.42394 0.02723 0.45117 153.58502 782.33369 

    11.6    0.42394 0.01726 0.4412 153.58502 1150.77 

     15   0.42394 0.01507 0.43901 153.58502 1261.58 

     20   0.42394 0.01311 0.43705 153.58502 1392.68 

     25   0.42394 0.01135 0.43529 153.58502 1551.36 

     30   0.42394 0.00978 0.43372 153.58502 1749.37 

      0.2 0.8 0.42394 0.01955 0.44349 153.58502 1236.99 

      0.3 0.7 0.42394 0.02933 0.45327 153.58502 1010 

      0.4 0.6 0.42394 0.03911 0.46305 153.58502 874.68747 

      0.5 0.5 0.42394 0.04888 0.47282 153.58502 782.34426 

 

 

It is further observed   that as the arrival parameter(𝜆) varies 

from 4 to 7, the variance of the number of customers in each 

queue and in the system increase from 0.28722 to 0.50263, 

0.01451 to 0.0254 and 0.30173 to 0.52803 respectively. The 

coefficient of variation of number of customers in first and 

second queues decreases from 186.59316 to 141.05117 and 

1330.31 to 1005.62 respectively, when all other parameters 

are fixed. It is also observed that as the service rate (α1) varies 

from 8.4 to 9.6, the variance of the number of customers in 

first queue decrease from 0.50309 to 0.4951, and in second 

queue it increases from 0.03606 to 0.18405. The coefficient of 

variation of number of customers in first queue increases from 

140.98691 to 142.12016, and in second queue decreases from 

697.56173 to 243.58641, when all other parameters are fixed. 

It is also observed   that as the service rate parameter (β1) 

varies from 10 to 25, the variance of the number of customers 

in first and second queues from 0.47587 to 0.42394 and 

0.18381 to 0.18334 respectively; the coefficient of variation 

of number of customers in each queue increases from 

144.96189 to 153.58502, when all other parameters are fixed. 

It is also observed   that as the service rate parameters (α2) and 

(β2) varies from 10.4 to 11.6 and 15 to 30 respectively, the 

variance of the number of customers in second queue and 

entire queue decreases.  The coefficient of variation of 

number of customers in second queue decreases, when all 

other parameters are fixed. 

It is also observed   that as the service rate (θ) increases from 

0.2 to 0.5, the variance of the number of customers in second 

queue increases from 0.01955 to 0.4888 the coefficient of 

variation of number of customers in second queue decreases 

from 1236.99 to 782.34426, when all other parameters are 

fixed. 

5.  SENSITIVITY ANALYSIS 
Sensitivity analysis of the model is performed with respect to 

the value of time(t), arrival rate λ, service rates of the first, 

second serversµ1(t) and µ2(t),  and all parameters together on 

the mean number of customers in the first, second queues ,the 

utilization of service station in  first,  second queues ,the mean 

delay in the first, second queues and the throughput of service 

station in  first and second queues. 
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For different values of  1 1 2 2t, , , , ,      the mean 

number of customers in the first and second queue, the 

utilization of service station in first and second queue, the 

mean delay in the first queue and second queue and the 

throughput of service station in first and second queue are 

computed with variation of -10%, -5%, 0%, 5%, 10%  are 

computed and are given in Table 4 .  

From Table 4 it is observed that the performance measures are 

highly affected by the variations in the time and other 

parameters of the model.  

 

 

 

 

Table 4 

The values of L1(t), L2(t), U1(t), U2(t), Thp1(t), Thp2(t),W1(t),W2(t)  for different values of  t,  λ,  α 1,  β 1, α 2, and  β 2. 

 

 

Parameter 

Performance  

measure 

% change in parameters 

-10 -5 0 5 10 

t =0.20 L1(t) 0.45587 0.49853 0.50053 0.50252 0.5362 

L2(t) 0.04837 0.03605 0.03549 0.03493 0.02572 

U1(t) 0.3661 0.39258 0.39379 0.39499 0.41503 

U2(t) 0.03076 0.02227 0.02188 0.0215 0.01521 

W1(t) 0.12578 0.12705 0.12711 0.12716 0.12792 

W2(t) 0.08258 0.08097 0.08089 0.08081 0.07935 

Thp1(t) 3.6244 3.92379 3.93793 3.95191 4.19182 

Thp2(t) 0.37836 0.27812 0.2735 0.26895 0.19321 

λ= 7 L1(t) 0.45048 0.47551 0.50053 0.52556 0.55059 

L2(t) 0.03194 0.03372 0.03549 0.03727 0.03904 

U1(t) 0.36268 0.37843 0.39379 0.40878 0.42339 

U2(t) 0.01971 0.0208 0.02188 0.02296 0.02404 

W1(t) 0.12421 0.12565 0.12711 0.12857 0.13004 

W2(t) 0.0808 0.08084 0.08089 0.08093 0.08098 

Thp1(t) 3.62678 3.7843 3.93793 4.08776 4.23388 

Thp2(t) 0.24642 0.25997 0.2735 0.28702 0.30052 

α 1=9 L1(t) 0.50293 0.50278 0.50053 0.49667 0.49157 

L2(t) 0.01595 0.02373 0.03549 0.05644 0.1074 

U1(t) 0.39525 0.39515 0.39379 0.39145 0.38833 

U2(t) 0.00257 0.01031 0.02188 0.04216 0.08975 

W1(t) 0.13983 0.13323 0.12711 0.12142 0.11613 

W2(t) 0.0801 0.08042 0.08089 0.08174 0.08382 

Thp1(t) 3.59674 3.77369 3.93793 4.09064 4.23284 

Thp2(t) 0.03222 0.12888 0.2735 0.52695 1.12181 

β 1=5 L1(t) 0.5025 0.50151 0.50053 0.49955 0.49858 

L2(t) 0.03552 0.03551 0.03549 0.03547 0.03546 

U1(t) 0.39498 0.39439 0.39379 0.3932 0.39261 

U2(t) 0.02191 0.0219 0.02188 0.02186 0.02185 

W1(t) 0.12851 0.1278 0.12711 0.12642 0.12573 

W2(t) 0.08089 0.08089 0.08089 0.08089 0.08089 

Thp1(t) 3.91033 3.92415 3.93793 3.95165 3.96532 

Thp2(t) 0.27391 0.2737 0.2735 0.2733 0.2731 

α 2=10.5 L1(t) 0.50053 0.50053 0.50053 0.50053 0.50053 
L2(t) 0.18173 0.06889 0.03549 0.01979 0.01087 
U1(t) 0.39379 0.39379 0.39379 0.39379 0.39379 
U2(t) 0.15076 0.05187 0.02188 0.00829 0.00102 
W1(t) 0.12711 0.12711 0.12711 0.12711 0.12711 
W2(t) 0.09467 0.08575 0.08089 0.0771 0.07384 
Thp1(t) 3.93793 3.93793 3.93793 3.93793 3.93793 
Thp2(t) 1.72616 0.62111 0.2735 0.10801 0.01383 

β 2=10 

 

L1(t) 0.50053 0.50053 0.50053 0.50053 0.50053 
L2(t) 0.03635 0.03592 0.03549 0.03507 0.03465 
U1(t) 0.39379 0.39379 0.39379 0.39379 0.39379 
U2(t) 0.02245 0.02216 0.02188 0.0216 0.02132 
W1(t) 0.12711 0.12711 0.12711 0.12711 0.12711 
      
W2(t) 0.08223 0.08155 0.08089 0.08023 0.07959 
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Thp1(t) 3.93793 3.93793 3.93793 3.93793 3.93793 
Thp2(t) 0.27615 0.27484 0.2735 0.27215 0.27077 

θ=0.1 L1(t) 0.50053 0.50053 0.50053 0.50053 0.50053 
L2(t) 0.03194 0.03372 0.03549 0.03727 0.03904 
U1(t) 0.39379 0.39379 0.39379 0.39379 0.39379 
U2(t) 0.01971 0.0208 0.02188 0.02296 0.02404 
W1(t) 0.12711 0.12711 0.12711 0.12711 0.12711 
W2(t) 0.0808 0.08084 0.08089 0.08093 0.08098 
Thp1(t) 3.93793 3.93793 3.93793 3.93793 3.93793 
Thp2(t) 0.24642 0.25997 0.2735 0.28702 0.30052 

 

6. COMPARATIVE STUDY: 

The comparative study of the developed models with 

homogenous Poisson arrivals is presented in this section. The 

performance measure of both models are presented in the 

Table 5 for different values of t= 0.14, 0.16, 0.18, 2. 

Table 5 

Comparative study of models with Non-Homogeneous and 

Homogeneous Poisson service rates 

t Param

eter 

Measu

re 

Non-

Homog

eneous 

service  

rate 

Homoge

neous 

service  

rate  

Differenc

e 

Percenta

ge of 

Variatio

n 

0.14 L1(t) 0.12919 0.13029 0.0011 0.85146 

L2(t) 0.02871 0.03244 0.00373 12.992 

U1(t) 0.12119 0.12216 0.00097 0.8004 

U2(t) 0.01517 0.01748 0.00231 15.2274 

W1(t) 0.12253 0.13332 0.01079 8.80601 

W2(t) 0.08839 0.10088 0.01249 14.1306 

0.16 L1(t) 0.16348 0.16647 0.00299 1.82897 

L2(t) 0.02114 0.02492 0.00378 17.8808 

U1(t) 0.15082 0.15335 0.00253 1.6775 

U2(t) 0.01043 0.01272 0.00229 21.9559 

W1(t) 0.12318 0.13569 0.01251 10.1559 

W2(t) 0.08666 0.10064 0.01398 16.132 

0.18 L1(t) 0.19194 0.1973 0.00536 2.79254 

L2(t) 0.01532 0.01901 0.00369 24.0862 

U1(t) 0.17465 0.17906 0.00441 2.52505 

U2(t) 0.00686 0.00905 0.00219 31.9242 

W1(t) 0.12349 0.13774 0.01425 11.5394 

W2(t) 0.08504 0.10046 0.01542 18.1326 

0.2 L1(t) 0.21541 0.22358 0.00817 3.79277 

L2(t) 0.01089 0.01438 0.00349 32.0478 

U1(t) 0.19379 0.20035 0.00656 3.38511 

U2(t) 0.00423 0.00624 0.00201 47.5177 

W1(t) 0.12351 0.13949 0.01598 12.9382 

W2(t) 0.08351 0.10031 0.0168 20.1174 

From Table 5, it is observed that as time increases the 

percentage variation of the performance measures between the 

two models also increasing. It is observed that the assumption 

of non-homogeneous Poisson service process has a significant 

influence on all the performance measures of the queueing 

model. Also time has a significant effect on the system 

performance and the proposed model can predict the 

performance more accurately. 

 

 

7. CONCLUSION 
This paper deals with a novel and useful two node tandem 

queueing model in which the service rates are time and state 

dependent. This model in very useful in analyzing systems 

under transient conditions, for the communication networks, 

such as LAN, WAN, MAN, in which the service rate is time 

dependent. This phenomenon is incorporated by 

characterizing the service processes through non-

homogeneous Poisson processes. The phase type service 

allowing the intermediary leavings from the system makes the 

model more effective and reduces congestion in buffers. The 

explicit expressions for the system performance measures 

such as the content of the buffers, the average waiting time of 

the customers in the queue and in the system, the throughput 

of the nodes and the variance are useful for predicting the 

system behavior under transient condition. It is observed that 

the time dependent and state dependent nature of the service 

processes has significant off influence on system performance 

measures. There is a scope for further extension of this paper 

by developing and analyzing a two node tandem queueing 

model with bulk arrivals having time and state dependent 

service rates. In bulk arrivals we may assume that customers 

may arrive batches of random size and join the queue for 

getting service. The bulk size distribution may be Geometric / 

truncated Bionomial / Uniform. This requires further 

investigation and which will be taken up elsewhere 
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