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ABSTRACT 

Point to Point ILC involves the tracking of specific points 

during motion in a repetitive manner. Point to point ILC 

makes the assumption that initial starting position of each trial 

remains same. In this paper, initial starting position of point to 

point motion in each trial is learned using neural networks. 

The proposed algorithm can also track the points which are 

changing in respective trials. The algorithm is checked for 

three points tracking during a trial, which are changing in 

sinusoidal manner. The results are shown by simulations in 

the end. 
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1. INTRODUCTION 
Many control systems in practice perform finite duration tasks 

repetitively, the system resets to the initial condition after the 

completion of each task, and the task is required to be repeated 

again. In these special systems, the control systems need to 

follow a specific trajectory, which can involve the tracking of 

entire trajectory, or the intermediate points or only the last 

point or form. Control technique to deal with these problems is 

classified as iterative learning control (ILC), first introduced by 

Arimoto. Based on the tracking requirements described above, 

iterative learning control (ILC) is termed as point to point ILC 

for intermediate points tracking or specific points tracking as 

given by [1]-[4], terminal ILC for final point tracking as given 

by [5]–[9]. The strength of ILC is to utilize the process 

information comprising of historical data and to improve the 

tracking performance on every trial. Since classical iterative 

learning control algorithm was introduced by Arimoto, the 

study of ILC is receiving extensive attention both for the 

improvement in its own algorithm i.e., theoretical domain and 

its application areas. 

Iterative learning control (ILC) is regarded as an intelligent 

control technique, and is used to improve the transient tracking 

performance for the systems which work in repetitive manner. 

ILC still finds importance for numerous control processes due 

to the existence of un modeled dynamics, the parametric 

uncertainties, or the disturbances and measurement noise 

emerging during actual system operation or due to the lack of 

suitable model design techniques. Especially in case of 

nonlinear system, where traditional control methods are not 

enough. So, for those systems that perform the tasks 

repetitively, ILC is a technique that can help in overcoming the 

limitations of other conventional controllers, hence making it 

likely to realize the perfect tracking performance when there 

are uncertainties in the model. ILC deals well in case of 

repetitive disturbances, whereas, in order to improve the 

robustness against non-repetitive disturbance, ILC is combined 

with feedback control.  

Point to point ILC or Terminal ILC can be described as the 

special cases of traditional ILC, i.e., entire trajectory tracking. 

So, there is a question that why we still need to define point to 

point ILC and terminal ILC. To emphasize the need of this 

classification, a few reasons are elaborated in the following: 

Point to point ILC and terminal ILC are required because of 

the non-availability of measurements on the entire operation 

trajectory. However, there are cases where measurements are 

available for the entire trajectory, but the tracking of some 

points is more important, standard ILC can be applied by 

designing reference passing through these points [10][11], [2]. 

Same way PTP ILC can be applied for TILC as it is a special 

case of PTP ILC. Even in these cases PTP ILC and TILC is 

still preferable because of the difficulty of selecting an optimal 

trajectory passing through the required points in case of PTP 

ILC, and in case of change in the plant, the optimal reference 

trajectory will no longer be optimal.  

The size of memory and hence the computations can be 

reduced. As in case of storing measurements for general ILC, 

greater memory is required because it needs to store all the 

measurements, while in point to point ILC only fewer 

measurements at specified points need to be stored, same way 

for TILC only one point measurements storage is required.  

Performance demands can be achieved in a better way while 

using PTP ILC and TILC. In these cases, as described above, 

the algorithms they target specific points, where unnecessary 

constraints are removed, which can result in less control effort 

and better convergence speed. 

Point to point control needs the motion profile to be generated 

in advance, and the tracking controller is needed to be 

designed. Whereas ILC provides the capability of learning 

from previous trials. So ILC can handle this problem simply by 

the use of any reference connecting the desired critical points 

[12]. An extra freedom is obtained because of the removal of 

the unnecessary constraints which the plant is following a 

predefined output between points in case of traditional ILC. 

In this paper, a technique is proposed which calculates the 

effect of initial states on the output of the system, and an 

adaptive point to point ILC algorithm is proposed, which 

tracks the specific points at specific intervals during the whole 
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working iteration. The proposed technique provides fast 

convergence to the desired points even in case of variable 

initial states. Hence, the proposed algorithm can deal with wide 

number of ILC areas. 

 In section II, point to point ILC problem and its representation 

is described. In section III the mathematical representation for 

the initial state learning is given. Section IV describes the 

proposed technique in detail. Section V describes the 

simulation results which shows the usability of the proposed 

technique. In section VI the conclusion is given. 

2. POINT TO POINT ILC  
 Consider the discrete-time, linear time-invariant (LTI), 

SISO system in the following 

  𝑥𝑘 𝑡 + 1 = 𝑨𝑥𝑘 𝑡 + 𝑩𝑢𝑘 𝑡 + 𝑤(𝑡)

𝑦𝑘 𝑡 = 𝑪𝑥𝑘 𝑡 + 𝑣(𝑡)
 (1) 

where 𝑡 ∈  0, 𝑇 . Here 𝑥 𝑡 ∈ 𝑅𝑛 , 𝑦 𝑡 ∈ 𝑅𝑚  𝑎𝑛𝑑 𝑢 ∈  𝑅𝑚  

represent states, output and input variables of system 

respectively. Whereas𝑤(𝑡) and 𝑣(𝑡) represent system and 

measurement noise. Here 𝑡 and 𝑘 represents time and iteration 

index. 

 Next, the N-sample input and output terms can be expressed 

as  

                   𝑢𝑘 𝑡 , 𝑡 ∈ {0,1, … , 𝑇 − 1}, 
                      𝑦𝑘 𝑡 , 𝑡 ∈ {𝑛, 𝑛 + 1, … , 𝑇 + 𝑛 − 1}, 

and desired system output is expressed as 

                𝑦𝑑 𝑡 , 𝑡 ∈ {𝑛, 𝑛 + 1, … , 𝑇 + 𝑛 − 1}. 

Here T is time duration of a trial and n represents the order of 

the system. The error signal for above sequence is defined 

by 𝑒𝑘 𝑡 = 𝑦𝑑 𝑡 −𝑦𝑘 𝑡 . In practice, T is always finite, 

however for analysis and design, it’s useful sometimes to 

consider trial length as infinite. The objective of ILC is the 

production of a series of inputs 𝑢𝑘 𝑡 , so that the output and 

the desired system output  𝑦𝑘 𝑡  tracks efficiently the 

reference output  𝑦𝑑 𝑡  or 𝑎𝑠 𝑡 → ∞, 𝑒𝑘 𝑡 → 0. 

Point to Point ILC, contrary to traditional ILC tracks specific 

points. In this case the reference is not defined for the entire 

trajectory, i.e., we don’t have the measurements of the entire 

trajectory. So the tracking of points other than specified by the 

reference is meaningless or irrelevant in this case. Its example 

can be given by, a robotic manipulator executing a pickup and 

placing task, here we are only concerned about tracking 

performance at the picking place and at the position of placing 

down whereas the behavior within these positions is of less 

concern. This also involves certain constraints, which will be 

explained later on. It can also be termed as intermediate point 

ILC which means that some points inside the trajectory are 

more important to track. 

Consider the system represented by equation (1) again, to deal 

with the point to point ILC, the output normally is written in 

the lifted matrix form with relative degree 1 i.e., 𝐶𝐵 ≠ 0 

                               𝑦𝑘 =  𝐺𝑢𝑘 + 𝑑                (2) 

Here 𝐺 is the N*N matrix 

𝐺 =

 
 
 
 
 

𝐶𝐵 0
𝐶𝐴𝐵 𝐶𝐵
𝐶𝐴2𝐵 𝐶𝐴𝐵

⋯
0 0
0 0
0 0

⋮ ⋱ ⋮
𝐶𝐴𝑁−1𝐵          ⋯ 𝐶𝐴𝐵 𝐶𝐵 

 
 
 
 

  (3) 

Next the N-sample terms of inputs and outputs can be 

expressed as under 

 𝑢𝑘 = [𝑢𝑘 𝑡1       𝑢𝑘 𝑡2  …    𝑢𝑘 𝑡𝑁 ]   (4) 

 𝑦𝑘 = [𝑦𝑘 𝑡1       𝑦𝑘 𝑡2   …    𝑦𝑘 𝑡𝑁 ]   (5) 

and the desired system output 

 𝑦𝑘
𝑒 = [𝑦𝑘 𝑡1       𝑦𝑘 𝑡2  …    𝑦𝑘 𝑡𝑀 ]   (6) 

   Hence, 𝑦𝑘
𝑒  can be written as 

𝑦𝑘
𝑒 = 𝐺𝑒 𝑢𝑘 +  𝑑𝑒      (7) 

Where 𝐺𝑒 , 𝑑
𝑒  are 𝑀 ∗ 𝑁 matrix and 𝑀 ∗ 1 vector obtained by 

extracting the 𝑡𝑖𝑡ℎ rows 1 ≤ 𝑖 ≤ 𝑀 from G and d, 

respectfully. 

Hence in this case the tracking error vector is written as  

                         𝑒𝑘
𝑒 =  𝑟𝑒 − 𝑦𝑘

𝑒                                                  
(8) 

Hence the problem in point to point ILC is to find the input 

updating control law so that the tracking error at the M 

intermediate points i.e., 0 ≤ 𝑡𝑖 … ≤ 𝑡𝑀  asymptotically follows 

lim𝑘→∞ 𝑒𝑘
𝑒 → 0 and lim𝑘→∞ 𝑢𝑘 = 𝑢∗.  

  Reference signal to be followed in case of Point to Point ILC 

is a subset of the entire trial duration, i.e., the reference is only 

defined on 0 ≤ 𝑡𝑖 … ≤ 𝑡𝑀  intermediate points where 𝑀 < 𝑁. 

In this case reference in vector form can be represented as 

follows: 

𝑟𝑒 = [𝑟 𝑡1  𝑟 𝑡2 …  𝑟 𝑡𝑀 ]𝑇     (9) 

In order to reach to the specific points, matrix G is used and 

multiplied with another matrix J. J matrix can be defined as 

𝐽𝑖,𝑗 =  
1         𝑖 = 1,2, …𝑀, 𝑗 = 𝐼

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (10) 

Where i represents the position of the points to be tracked. For 

an example, consider 𝑇𝑠  as sampling point, and at 3 time 

instants 𝑇1, 𝑇2𝑎𝑛𝑑 𝑇3 and 𝐽1 =
𝑇1

𝑇𝑠
 , 𝐽2 =

𝑇2
𝑇𝑠

  𝑎𝑛𝑑 𝐽3 =

𝑇3
𝑇𝑠

  and here matrix 𝐽𝑖,𝑗  is written as under 

𝐽 =  
0 … 0
0 … …
0 … …

    
1 0 …
… 0 1
… … …

     
… … 0
0 … 0
… 0 1

  (11) 

And after multiplying it with G matrix defined above we get 

the matrix of the form shown below 

 
𝐶𝐴𝑎−1𝐵 … 𝐶𝐴𝐵
𝐶𝐴𝑏−1𝐵 … …
𝐶𝐴𝑐−1𝐵 … …

    
𝐶𝐵 0 …
… 𝐶𝐴𝐵 𝐶𝐵
… … …

     
… … 0
0 … 0
… 𝐶𝐴𝐵 𝐶𝐵

 (12) 

Where a, b and c represent the position of the points to track. 

The above matrix describes the weights to be multiplied with 

the input vector u, at specific iterations to give the output 

value which can be described as under 

𝑦𝑘 = 𝐽 ∗ 𝐺 ∗ 𝑢𝑘     (13) 

Where 𝑦𝑘  represents the plant output at trial k and represents 

the value of output on the points which we want to track.  

Now, the objective is to find 𝑢𝑘  such that following condition 

is satisfied 

lim𝑘→∞ 𝑦𝑟 − 𝐽𝐺𝑢𝑘 = 0   (14) 

Now the standard ILC law can be written as  

  𝑢𝑘+1 = 𝑢𝑘 + 𝐿(𝑦𝑟 − 𝐽𝑦𝑘)    (15) 

So that the error evolution between the points is written in the 

following form 

  𝐽𝑒𝑘+1 = (𝐼𝑀 − 𝐽𝐺𝐿)  𝐽𝑒𝑘    (16) 
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And the convergence condition is given as  

𝜌(𝐼𝑀 − 𝐽𝐺𝐿) < 1    (17) 

This condition guarantees point-to-point error of reaching 

zero value. 

3. PROBLEM FORMULATION FOR 

INITIAL CONDITION TRACKING 
Consider eq (1) again, here the relation between the initial 

conditions and the output at specific instants of the trial can be 

written as follows 

𝑦𝑘 𝑝1 = 𝐶𝐴𝑝1𝑥𝑘 0 + 𝐶 𝐴𝑝1−𝑡−1𝐵
𝑝1−1

𝑡=0
𝑢𝑘  

𝑦𝑘 𝑝2 = 𝐶𝐴𝑝2𝑥𝑘 0 + 𝐶 𝐴𝑝2−𝑡−1𝐵
𝑝2−1

𝑡=0
𝑢𝑘  

𝑦𝑘 𝑝3 = 𝐶𝐴𝑝3𝑥𝑘 0 + 𝐶 𝐴𝑝3−𝑡−1𝐵
𝑝3−1

𝑡=0
𝑢𝑘  

⋮ 

𝑦𝑘 𝑝𝑁 = 𝐶𝐴𝑝𝑁𝑥𝑘 0 + 𝐶  𝐴𝑝𝑁−𝑡−1𝐵
𝑝𝑁−1
𝑡=0 𝑢𝑘        (18) 

Here 𝑝1, 𝑝2, 𝑝3 𝑎𝑛𝑑 𝑝𝑁 represents the points to be tracked 

during the trial.  

The above formulation can also be written in the form  

𝑦𝑘 𝑝1 = 𝑓𝑝1
(𝑥𝑘 0 ) + 𝐵𝑝1

∗ 𝑢𝑘  

𝑦𝑘 𝑝2 = 𝑓𝑝2
(𝑥𝑘 0 ) + 𝐵𝑝2

∗ 𝑢𝑘  

𝑦𝑘 𝑝3 = 𝑓𝑝3
(𝑥𝑘 0 ) + 𝐵𝑝2

∗ 𝑢𝑘  

⋮ 
𝑦𝑘 𝑝𝑁 = 𝑓𝑝𝑁

(𝑥𝑘 0 ) + 𝐵𝑝𝑁

∗ 𝑢𝑘        (19) 

Here 𝑓𝑝𝑁
 𝑥𝑘 0  = 𝐶𝐴𝑝𝑁𝑥𝑘 0  and 

𝐵𝑝𝑁

∗ = 𝐶  𝐴𝑝𝑁−𝑡−1𝐵
𝑝𝑁−1
𝑡=0 .  

In order to approximate the relation between the initial states 

and the output at specific instants, RBF neural networks has 

been introduced. Which is written as  

 𝑓𝑝𝑁
 𝑥𝑘 0  = 𝑊𝑝𝑁

𝑇 𝜑(𝑥𝑘 0 )   (20) 

Here 𝑊𝑝𝑁

𝑇 𝜖𝑅𝑛∗𝑂 represents an unknown ideal weight matrix, 

O represents the number of neurons in the hidden layer. 𝑓𝑝𝑁
 .   

greatly depends on the structure of neural network and the 

number of neurons.  𝜑(𝑥𝑘 0 )𝜖𝑅𝑂  represents the output of 

the neural network hidden layer.  

Hence, the system’s output at specific instants of time in 

terms of above RBF network can be written as follows 

𝑦𝑘
𝑁𝑁 𝑝1 = 𝑓𝑝𝑁

 𝑥𝑘 0 , 𝑊 + 𝐵𝑝1

∗ 𝑢𝑘 = 

𝑊𝑇𝜑 𝑥𝑘 0  + 𝐵𝑝1

∗ 𝑢𝑘  

𝑦𝑘
𝑁𝑁 𝑝2 = 𝑓𝑝𝑁

 𝑥𝑘 0 , 𝑊 + 𝐵𝑝2

∗ 𝑢𝑘 = 

𝑊𝑇𝜑 𝑥𝑘 0  + 𝐵𝑝2

∗ 𝑢𝑘  

𝑦𝑘
𝑁𝑁 𝑝3 = 𝑓𝑝𝑁

 𝑥𝑘 0 , 𝑊 + 𝐵𝑝3

∗ 𝑢𝑘 = 

𝑊𝑇𝜑 𝑥𝑘 0  + 𝐵𝑝3

∗ 𝑢𝑘  

⋮ 
𝑦𝑘

𝑁𝑁 𝑝𝑁 = 𝑓𝑝𝑁
 𝑥𝑘 0 , 𝑊 + 𝐵𝑝𝑁

∗ 𝑢𝑘 = 

𝑊𝑇𝜑 𝑥𝑘 0  + 𝐵𝑝𝑁

∗ 𝑢𝑘   (21) 

Here, Let Θ =  𝑊𝑝1

𝑇 , 𝑊𝑝2

𝑇 , 𝑊𝑝3

𝑇 , … , 𝑊𝑝𝑁

𝑇 , 𝐵𝑝1

∗ , 𝐵𝑝2

∗ , 𝐵𝑝3

∗ , … , 𝐵𝑝𝑁

∗   , 

𝜓𝑘 = [𝜑 𝑥𝑘 0  
𝑇

, 𝑢𝑘
𝑇]  (22) 

Which can be written in compact form as under, 

𝑦𝑘
𝑁𝑁 𝑝𝑁 = Θ𝜓𝑘    (23) 

Assumption 1. The system is both controllable, and 

observable, 𝑛 ≤ 𝑚, and 𝐵𝑝𝑁

∗ ∈ 𝑅𝑛∗𝑚  is full rank. 

Assumption 2. Initial state 𝑥𝑘 0  is accessible in every 

iteration. 

4. CONTROLLER DESIGN 
The control update law for the proposed technique is given by 

the following equation: 

𝑢𝑘 = (𝐵 𝑘
∗)−1[𝑦𝑑,𝑘 𝑁 − 𝑊 𝑘

𝑇𝜑 𝑥𝑘 0  ]  (24) 

Here 𝐵 𝑘
∗  and 𝑊 𝑘  are the estimates of W and 𝐵∗  for the k-th 

iteration. 

𝑢𝑘  for every iteration is applied on the plant and the neural 

network approximation function. 

The estimated plant output is  

𝑦 𝑘 𝑁 = 𝑓  𝑥𝑘 0 , 𝑊 𝑘 + 𝐵 𝑘
∗𝑢𝑘  

= 𝑊 𝑘
𝑇𝜑 𝑥𝑘 0  + 𝐵 𝑘

∗𝑢𝑘   (25) 

The estimate error is 

𝑒 𝑘 𝑁 = 𝑦 𝑘 𝑁 − 𝑦𝑘 𝑁    (26) 

Let Θ 𝑘 = [𝑊 𝑘
𝑇 , 𝐵 𝑘

∗], 𝜃 𝑖,𝑘  represent the i-th row vector of Θ 𝑘  

And 𝜔 𝑖,𝑘
𝑇  and 𝑏 𝑖,𝑘

∗  denote the i-th row vectors of 𝑊 𝑘
𝑇  𝑎𝑛𝑑 𝐵 𝑘

∗  

respectively. Then, 𝜃 𝑖,𝑘 = [𝜔 𝑖,𝑘
𝑇 ,𝑏 𝑖,𝑘

∗ ], 𝑖 = 1,2, … , 𝑛. Hence the 

estimated model is 

𝑦 𝑘 𝑁 = 𝜔 𝑖,𝑘
𝑇 𝜑 𝑥𝑘 0  + 𝑏 𝑖,𝑘

∗ 𝑢𝑘 = 𝜃 𝑖,𝑘Γ𝑘    (27) 

And the neural network updating law is  

𝜃 𝑖,𝑘+1 = 𝜃 𝑖,𝑘 −
Γ 𝑘
𝑇

1+Γ 𝑘
𝑇Γ𝑘

   (28) 

5. CASE STUDY 
 In order to validate the proposed methodology, the following 

discrete-time SISO system is used  

𝑥𝑘 𝑡 + 1 =  
0.5 0.035 0.025

0.0255 0.6 −0.99
0.75 0.03 0.025

 𝑥𝑘 𝑡 +

 0.2 0.2 0.0 𝑇𝑢𝑘   (29) 

The interval is [0, 20]. 

The initial starting points are changing randomly within the 

range [0, 0.1] for every iteration. The tracking reference 

points can be changing, for the simulation three points are 

chosen to be tracked and these three points are changing per 

iteration.  

For the simulation the value of 𝑑0 = 0.001, 𝑡ℎ𝑒𝑡𝑎 =
[5 5 5 0.5] and 𝑢0 = 0. The error propagation for three 

different points tracking within the iteration are given in the 

figure below. From the figures it can be seen that although the 

initial conditions are varying but the proposed algorithm track 

the iteration variant reference for every points within one trial. 

Figure 1 Random initial conditions for respective iteration 

number 
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Figure 2 Points tracking performance 

 

 
Figure 3 Error propagation per iteration 

6. CONCLUSION 
A point to point ILC algorithm is proposed which introduces 

the capability of tracking the iteration varying initial start 

position changes. Moreover, the proposed algorithm has the 

ability to track iteration varying reference points within the 

iterations. This algorithm can be used in number of 

applications providing adaptivety to the initial condition 

changes and changing reference points. Good convergence is 

achieved using neural networks learning.   
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