
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.4, November 2017

9

Implementing Lock Free Data Structure for Shared-

Memory Systems using Linked List

Nuku Atta Kordzo Abiew

Faculty of Computing and Information Systems,
GTUC, Ghana

Dominic Asamoah

Department of Computer Science, KNUST, Ghana

ABSTRACT

It is becoming evident that non-blocking algorithms can

deliver significant benefits to parallel system. Such algorithms

use low-level atomic primitives such as compare-and-swap

through careful design and by eschewing the use of locks, it is

possible to build system which scale to highly-parallel

environments and which are resilient to scheduling decisions.

Lock-free data structures implement concurrent objects

without the use of mutual exclusion. This approach can avoid

performance problems due to unpredictable delays while

processes are within critical sections. Although universal

methods are known that give lock-free data structures for any

abstract data type, the overhead of these methods makes them

inefficient when compared to conventional techniques using

mutual exclusion, such as spin locks. In using lock-free data

structures and algorithms for implementing a shared linked

list and skip list, it allows concurrent traversal, insertion, and

deletion by any number of processes.

General Terms

Data Structure, Memory Management, Algorithms

Keywords

Exclusion, Linked List, Lock-free, Non-blocking, Spin-Lock.

1. INTRODUCTION
Mutual exclusion is one of the best and most standard ways of

implementing data structure in distributed systems. With

mutual exclusion, locks are used to resolve conflicts between

processes attempting to access data structure simultaneously.

Although this approach is widely used and it is easy to

implement data structures this way, it has a major weakness,

that is, when one process is in the critical section (that is,

when it is modifying the data structure), all other processes

must wait before they are permitted to access it. In contrast,

an implementation of a shared-memory object is lock-free (or

non-blocking), if for any possible execution, the system as a

whole is always making progress, that is, some process is

guaranteed to complete its operation.

Insertion and deletion using compare and swap during the

design and implementation of lock-free data structure is of a

major problem to most researchers and designers. In

implementing insertion and deletion with a linked list with

nodes A,B and C as shown in the Fig. 1, Node B can easily be

deleted by moving Node A to right from Node B to Node D,

and at the same time trying to insert Node C by switching B

right from D to C. The resultant list will contain only node A

and D. This implies that, Node B was deleted or removed

successfully however there was unsuccessfully insertion of

Node C. A similar problem arises when one try to delete two

adjacent nodes concurrently. The root of these problems lies

in the fact that both the right pointer of the deleting node and

the right pointer of its preceding node cannot be control at the

same time if using a simple C&S primitive. It can be done

with a stronger double compare-and-swap primitive[1].The

study is aimed at presenting a novel implementation of linked-

lists which is non-blocking, linearizable and which is based on

the compare-and-swap (C & S) operation found on

contemporary processors.

Fig 1: Concurrent deletion of B and insertion of C

2. LITERATURE REVIEW
Researchers have considered the benefits of avoiding mutual

exclusion since at least the early 1970’s. Leslie Lamport [2]

gave the first lock-free algorithm for the problem of a singe-

writer/multi-reader shared variable. Herlihy [3] proved that

for non-blocking implementation of most interesting data

types (linked lists among them), a synchronization primitive

that is universal, in conjunction with READ and WRITE, is

both necessary and sufficient. Fisher et al[4] opined that

COMPARE and SWAP is a universal primitive, since it can

be used to solve consensus problem for any number of

processes. Herlihy [5] gave the first algorithm for

implementing lock-free using universal methods such as

mutual exclusion. This novelty have been improved upon by

several researchers. However, it has become increasingly

apparent that universal methods suffer from several sources of

inefficiency, such as wasted parallelism, excessive copying

and generally high overhead. Massalin et al [6] coined the

term lock-free and implemented it on a multiprocessor

operating system kernel using lock-free data structures.
However, their algorithms require a two word version of the

COMPARE and SWAP synchronization primitive that is not

widely available. Another implementation of lock-free data

structure using linked list was also presented by Harris [7].

Michael [8] as part of his lock-free hash table design also

presented an algorithm on the implementation using linked list

data structure. Treiber [9] also proposed an enhanced

algorithm of Michael’s technique which was more memory

efficient. Shalev et al[11] contributed to the growth of lock-

free data structures by suggesting the implementation of lock

free extensible hash table using linked list and skip list

dictionary.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.4, November 2017

10

3. METHODOLOGY

3.1 The Link List Data Structure
Linked list as shown in Fig 2, is a data structure consisting of

a group of nodes which together represent a sequence. Under

the simplest form, each node is composed of a data and a

reference (in other words, a link) to the next node in the

sequence; more complex variants add additional links. This

structure allows for efficient insertion or removal of elements

from any position in the sequence.

Linked lists are among the simplest and most common data

structures. They can be used to implement several other

common abstract data types, including lists (the abstract data

type), stacks, queues, associative arrays, and S-expressions,

though it is not uncommon to implement the other data

structures directly without using a list as the basis of

implementation. The principal benefit of a linked list over a

conventional array is that the list elements can easily be

inserted or removed without reallocation or reorganization of

the entire data structure because the data items need not be

stored contiguously in memory, while an array has to be

declared in the source code, before compiling and running the

program.

A non-blocking algorithm ensures that threads competing for

a shared resource do not have their execution indefinitely

postponed by mutual exclusion.

A non-blocking algorithm is lock-free if there is guaranteed

system-wide progress regardless of scheduling; wait-free if

there is also guaranteed per-thread progress. Obstruction-

freedom is possibly the weakest natural non-blocking progress

guarantee. All lock-free algorithms are obstruction-free.

Fig 2: A linked list with two nodes

The definition of 'lock-free' and 'wait-free' only mention the

upper bound of an operation. Therefore lock-free data

structures are not necessarily the best choice for every use

case. In order to maximize the throughput of an application

one should consider high-performance concurrent data

structures. Lock free data structures will be a better choice in

order to optimize the latency of a system or to avoid priority

inversion, which may be necessary in real-time applications.

In general, it’s advisable to consider if lock-free data

structures are necessary or if concurrent data structures are

sufficient. In any case it is advisable to perform benchmarks

with different data structures for a specific workload.

3.2 System Design and Algorithms
One of the major problems one runs into when designing a

lock-free linked list as stated earlier is the fact that one cannot

easily control both the right pointer of the node that is to be

deleted and the right pointer of its preceding node at the same

time using a simple C&S primitive. It can be done with a

stronger double compare- and-swap primitive [1]. To counter

these challenges, one can use the technique of Harris’s

implementation [6]. Instead of applying Compare and Swap’s

(C&S) to the right pointer of the node, apply it to the

successor field, which consists of a right pointer and a mark

bit.

Another solution to the challenges is the introduction of

back_link pointers, similar to the ones proposed by Valois

[10]. This is then used to replace the mark bits, so that the

successor field consists of a right pointer and a back_link. If

the node has a null back_link pointer, it is not marked,

otherwise it is. In the marking stage of a deletion, a process

would set the back_link of the node to be deleted to point to

the preceding node, using C & S on the node’s successor

filed. The simple introduction of back_links does not yield a

data structure with good performance. One of the ways to do

so is to ensure that whenever a back_link is set, it is pointing

to an unmarked node. This is done by introducing one more

bit known as the flag bit to reflect the status of the node. The

algorithm for the three major routines: Search, Delete and

Insert, are shown in Fig. 3, Fig.5 and Fig 6 respectively.

Fig 3: Search Routine

Search (Key k): Node

1. (curr_node, next_node) = SearchFrom(k, head)

2 .If (curr_node.key = k)

3. return curr_node

4 .Else

5. return NO_SUCH_KEY

12 99 37

http://en.wikipedia.org/wiki/List_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Queue_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/S-expression
http://en.wikipedia.org/wiki/Array_data_structure

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.4, November 2017

11

SearchFrom (Key k, Node *curr_node): (Node, Node)

1 next_node = curr_node.right

2 while (next_node.key <= k)

3 while (next_node.mark == 1 && (curr_node.mark == 0 || curr_node.right != next_node))

4 if (curr_node.right == next_node)

5 HelpMarked(curr_node, next_node)

6 next_node = curr_node.right

7 if (next_node.key <= k)

8 curr_node = next_node

9 next_node = curr_node.right

10 return (curr_node, next_node)

Fig 4: Search from Routine

Delete(Key k): Node

1 (prev_node, del_node) = SearchFrom(k – e, head)

2 if (del_node.key != k) // k is not found in the list

3 return NO_SUCH_KEY

4 (prev_node, result) = TryFlag(prev_node, del_node)

5 if (prev_node != null)

6 HelpFlagged(prev_node, del_node)

7 if (result == false)

8 return NO_SUCH_KEY

9 return del_node

Fig 5: Delete Routine

The SearchFrom routine is used to perform the searches in the

data structure. This routine takes a key and a node as its

arguments. It traverses the list starting from the specified

node, looking for the first node with a key strictly greater than

the specified key. This routine calls the SearchFrom routine in

its first line, then used the first of the two nodes returned to

determine if there is a node with key k in the list. The Insert

routine (Fig. 6) first calls SearchFrom to find where to insert

the new key. SearchFrom returns a pair of node pointers

prev_node and next_node such that prev_node.key ≤ k <

next_node.key. Insert compares the key of prev_node to the

new key it is trying to insert, and if they are not equal, it

creates a new node since it is requirement that all the keys are

to be unique, and enters the loop in lines 5-23, from which it

can only exit if it successfully inserts the new node or another

process inserts a node with the same key (lines 20-22). The

Delete routine in Fig 5, performs a three-step deletion of the

node. If the deletion is successful, Delete returns a pointer to

the deleted node, otherwise it returns NO_SUCH_KEY. A

successful deletion is linearized when the marking is

performed. The Linked List Workshop application provides

the three main list operations presented in Java. The three

main routines are the same operations presented in The

Linked List Workshop application. Fig. 7 shows how the Link

List Workshop application looks when it’s started. Initially,

there are sixty (60) data elements on the list generated

automatically.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.4, November 2017

12

Insert (Key k, Elem e): Node

1 (prev_node, next_node) = SearchFrom(k, head)

2 if (prev_node.key == k)

3 return DUPLICATE_KEY

4 newNode = new node(key = k, elem = e)

5 loop

6 prev_succ = prev_node.succ

7 if (prev_succ.flag == 1)

8 HelpFlagged(prev_node, prev_succ.right)

9 else

10 newNode.succ = (next_node, 0, 0)

11 result = c&s(prev_node.succ, (next_node, 0, 0), (newNode, 0, 0))

12 if (result == (newNode, 0, 0)) // SUCCESS

13 return newNode

14 else // FAILURE

15 if (result == (*, 0, 1)) // failure due to flagging

16 HelpFlagged(prev_node, result.right)

17 while (prev_node.mark == 1) // possibly a failure due to marking

18 prev_node = prev_node.back_link

19 (prev_node, next_node) = SearchFrom(k, prev_node)

20 if (prev_node.key == k)

21 free newNode

22 return DUPLICATE_KEY

23 end loop

Fig 6: Insert Routine

Fig 7: Linked List Workshop Application

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.4, November 2017

13

4. ANALYSIS
This section is the description of the implementation,

empirical evidence and the experimental proof of the

correctness of the proposed algorithms. There are several

invariants and definitions that hold throughout the execution

and experimentation. The definitions of these terms are given

below.

 Def. 1: A preinserted node is a node that was

created, but has not yet been inserted into the list.

 Def. 2: A node is regular if it is unmarked, and it is

not a preinserted node.

 Def. 3: A node is logically deleted if it is marked

and has a regular node linked to it.

 Def. 4: A node is physically deleted if it is marked

and there is no regular node linked to it.

 Inv 1: Keys are strictly sorted: For any two nodes

n1, n2, if n1.right = n2, then n1.key < n2.key.

 Inv 2: The union of regular and logically deleted

nodes forms a linked list structure with head being

the first node and tail being the last node.

 Inv 3: For any logically deleted node, its

predecessor is flagged (and unmarked), and its

successor is not marked.

 Inv 4: For any logically deleted node, its back_link

is pointing to its predecessor, i.e. if n is logically

deleted, and m is a node of the list such that m is not

physically deleted and m.right = n, then n.back_link

= m.

 Inv 5: No node can be both marked and flagged at

the same time, i.e. there is no node n such that

n.succ = (*, 1, 1).

Theorem 1: Invariant 5 always holds.

The invariant obviously holds for an empty list. When a new

node is created, its successor pointer is set to be unflagged and

unmarked (line 10 in Insert), and it does not change until the

node is inserted into the list.

Theorem 2: Invariants 1-3 always hold.

Initially the list contains no keys and all the invariants

obviously hold. The algorithms modify the data structure only

by performing C&S operations or by setting back_links in

line 1 of HelpFlagged routine. By other auxiliary Propositions

4, 7, 8, and 11 none of these four C&S operations can violate

invariants 1-3, so they always hold.

Theorem 3: Inv 4 always holds.

This invariant obviously holds in the beginning when the list

is empty. It can also be prove that if it holds before a

modification, it will hold afterwards as well. It has been prove

that the modification below cannot violate Inv 4.

The C&S in the Insert routine is result = c&s(prev_node.succ,

(next_node, 0, 0), (newNode, 0, 0)). Immediately before the

C&S prev_node is not flagged, and thus by Inv 3, next_node

is not marked. Also, when the C&S is performed, newNode is

not marked. Thus this C&S preserves Inv 4.

Theorem 4 (Delete correctness)

 If an execution of the Delete (k) routine returns

NO_SUCH_KEY (indicating an unsuccessful deletion), then

for this execution we can choose a linearization point, at

which there was no regular node with key k in the data

structure. If an execution of the Delete (k) routine returns a

pointer to a node (indicating a successful deletion), then for

this execution we can choose a linearization point, at which

this node became marked.

Theorem 5 (Insert correctness):

If an execution of the Insert(k, e) routine returns

DUPLICATE_KEY (indicating an unsuccessful insertion),

then for this execution we can choose a linearization point, at

which there was a regular node with key k in the data

structure. If an execution of the Insert(k, e) routine returns a

pointer to a node (indicating a successful insertion), then the

node’s key is equal to k, and for this execution we can choose

a linearization point, at which this node gets inserted,

becoming a regular node.

Theorem 6 (Search correctness)

If an execution of the Search(k) routine returns

NO_SUCH_KEY, then we can choose a linearization point, at

which there was no regular node with key k in the data

structure. If an execution of the Search(k) routine returns a

pointer to a node, then the key of this node is k, and for this

execution we can choose a linearization point, at which this

node was a regular node.

5. CONCLUSION
This research is aimed at presenting a novel implementation

of linked-lists which is non-blocking, linearizable and which

is based on the compare-and-swap (CAS) operation found on

contemporary processors. The presented algorithms

(searching, insertion, and deletion) exploit a fine granularity

synchronization strategy to significantly outperform existing

algorithms, particularly for long linked lists and skip list data

structures.

The use of COMPARE & SWAP to swing pointers is

susceptible to the ABA problem. The solution relies on the

careful memory management and in particular the use of two

operations-SAFEREAD and RELEASE. Also the

implementing the algorithm in a desired programming

language such as an Assembly language required a high level

of expertise.

Possible areas of future research include extensions to other

linked data structures. The idea of localizing concurrency

control can also be applied to structures such as trees, heaps

and graphs. It remains to carefully develop the necessary

algorithms. Application of non-blocking structures in new

areas (e.g. parallel databases) is also of interest as is the idea

of applying Barnes’ “operation completion” concept to the

algorithm to decrease the number of conflicts.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.4, November 2017

14

6. REFERENCES
[1] Greenwald, M. 1999. Non-Blocking synchronization and

system design. PhD Thesis. Stanford University,

Technical Report STAN-CS-TR-99

[2] Lamport L. 1974 A new solution of Djikstra concurrent

programming problem. Communication of the ACM,

[3] Herlihy, M.1991, Wait-free synchronization. ACM

Transactions on Programming Languages and Systems,

124-149.

[4] Fischer, M.J, Lynch, N.A and Paterson M.S. 1985,

Impossibility of distributed consensus with one faulty

process. ACM Journal 32, 2 , 374 – 382.

[5] Herlihy, M.1993, A methodology for implementing

highly concurrent data object. ACM Transactions on

Programming Language and Systems Vol 15, 745-770.

[6] Massalin H and Pu, C. 1991, A lock-free multiprocessor

OS Kernel. Technical Report CUCS-005-91, Columbia

University.

[7] Harris, T.L. 2001, A pragmatic implementation of non-

blocking list. Proceedings of the 15th International

Symposium on Distributed Computing, 300 -314.

[8] Michael M. 2002, Safe Memory Reclamation for

Dynamic lock-free objects using atomic reads and writes.

Proceedings of the 21st Annual Symposium on Principles

of Distributed Computing, 21 – 30.

[9] Treiber R.K.1986, Systems programming: Coping with

Parallelism, Research report RJ 5118, IBM Almaden

Research Center, 123.

[10] Valois John D.1995, Lock-free linked lists using

compare-and-swap. Proceedings of the 14th ACM

Symposium on Principles of Distributed Computing,

214-222.

[11] Shalev O and Shavit N, 2003, Split-Ordered Lists: Lock-

Free Extensible Hash Tables, ACM Press.

IJCATM : www.ijcaonline.org

