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ABSTRACT 

It is becoming evident that non-blocking algorithms can 

deliver significant benefits to parallel system. Such algorithms 

use low-level atomic primitives such as compare-and-swap 

through careful design and by eschewing the use of locks, it is 

possible to build system which scale to highly-parallel 

environments and which are resilient to scheduling decisions. 

Lock-free data structures implement concurrent objects 

without the use of mutual exclusion. This approach can avoid 

performance problems due to unpredictable delays while 

processes are within critical sections. Although universal 

methods are known that give lock-free data structures for any 

abstract data type, the overhead of these methods makes them 

inefficient when compared to conventional techniques using 

mutual exclusion, such as spin locks. In using lock-free data 

structures and algorithms for implementing a shared linked 

list and skip list, it allows concurrent traversal, insertion, and 

deletion by any number of processes.   
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1. INTRODUCTION 
Mutual exclusion is one of the best and most standard ways of 

implementing data structure in distributed systems. With 

mutual exclusion, locks are used to resolve conflicts between 

processes attempting to access data structure simultaneously. 

Although this approach is widely used and it is easy to 

implement data structures this way, it has a major weakness, 

that is, when one process is in the critical section (that is, 

when it is modifying the data structure), all other processes 

must wait before they are permitted to access it. In contrast, 

an implementation of a shared-memory object is lock-free (or 

non-blocking), if for any possible execution, the system as a 

whole is always making progress, that is, some process is 

guaranteed to complete its operation. 

Insertion and deletion using compare and swap during the 

design and implementation of lock-free data structure is of a 

major problem to most researchers and designers. In 

implementing insertion and deletion with a linked list with 

nodes A,B and C as shown in the Fig. 1, Node B can easily be 

deleted by moving Node A to right from Node B to Node D, 

and at the same time trying to insert Node C by switching B 

right from D to C. The resultant list will contain only node A 

and D. This implies that, Node B was deleted or removed 

successfully however there was unsuccessfully insertion of 

Node C. A similar problem arises when one try to delete two 

adjacent nodes concurrently. The root of these problems lies 

in the fact that both the right pointer of the deleting node and 

the right pointer of its preceding node cannot be control at the 

same time if using a simple C&S primitive. It can be done 

with a stronger double compare-and-swap primitive[1].The 

study is aimed at presenting a novel implementation of linked-

lists which is non-blocking, linearizable and which is based on 

the compare-and-swap (C & S) operation found on 

contemporary processors.  

 

Fig 1: Concurrent deletion of B and insertion of C 

2. LITERATURE REVIEW 
Researchers have considered the benefits of avoiding mutual 

exclusion since at least the early 1970’s. Leslie Lamport [2] 

gave the first lock-free algorithm for the problem of a singe-

writer/multi-reader shared variable. Herlihy [3] proved that 

for non-blocking implementation of most interesting data 

types (linked lists among them), a synchronization primitive 

that is universal, in conjunction with READ and WRITE, is 

both necessary and sufficient. Fisher et al[4] opined that  

COMPARE and SWAP is a universal primitive, since it can 

be used to solve consensus problem for any number of 

processes. Herlihy [5] gave the first algorithm for 

implementing lock-free using universal methods such as 

mutual exclusion. This novelty have been improved upon by 

several researchers. However, it has become increasingly 

apparent that universal methods suffer from several sources of 

inefficiency, such as wasted parallelism, excessive copying 

and generally high overhead. Massalin et al [6] coined the 

term lock-free and implemented it on a multiprocessor 

operating system kernel using lock-free data structures. 
However, their algorithms require a two word version of the 

COMPARE and SWAP synchronization primitive that is not 

widely available. Another implementation of lock-free data 

structure using linked list was also presented by Harris [7]. 

Michael [8] as part of his lock-free hash table design also 

presented an algorithm on the implementation using linked list 

data structure. Treiber [9] also proposed an enhanced 

algorithm of Michael’s technique which was more memory 

efficient. Shalev et al[11] contributed to the growth of lock-

free data structures by suggesting the implementation of lock 

free extensible hash table using linked list and skip list 

dictionary. 
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3. METHODOLOGY 

3.1 The Link List Data Structure 
Linked list as shown in Fig 2, is a data structure consisting of 

a group of nodes which together represent a sequence. Under 

the simplest form, each node is composed of a data and a 

reference (in other words, a link) to the next node in the 

sequence; more complex variants add additional links. This 

structure allows for efficient insertion or removal of elements 

from any position in the sequence. 

Linked lists are among the simplest and most common data 

structures. They can be used to implement several other 

common abstract data types, including lists (the abstract data 

type), stacks, queues, associative arrays, and S-expressions, 

though it is not uncommon to implement the other data 

structures directly without using a list as the basis of 

implementation. The principal benefit of a linked list over a 

conventional array is that the list elements can easily be 

inserted or removed without reallocation or reorganization of 

the entire data structure because the data items need not be 

stored contiguously in memory, while an array has to be 

declared in the source code, before compiling and running the 

program.  

A non-blocking algorithm ensures that threads competing for 

a shared resource do not have their execution indefinitely 

postponed by mutual exclusion.  

A non-blocking algorithm is lock-free if there is guaranteed 

system-wide progress regardless of scheduling; wait-free if 

there is also guaranteed per-thread progress. Obstruction-

freedom is possibly the weakest natural non-blocking progress 

guarantee. All lock-free algorithms are obstruction-free. 
 

 

 

 

 

Fig 2: A linked list with two nodes 
 

The definition of 'lock-free' and 'wait-free' only mention the 

upper bound of an operation. Therefore lock-free data 

structures are not necessarily the best choice for every use 

case. In order to maximize the throughput of an application 

one should consider high-performance concurrent data 

structures. Lock free data structures will be a better choice in 

order to optimize the latency of a system or to avoid priority 

inversion, which may be necessary in real-time applications. 

In general, it’s advisable to consider if lock-free data 

structures are necessary or if concurrent data structures are 

sufficient. In any case it is advisable to perform benchmarks 

with different data structures for a specific workload. 

3.2 System Design and Algorithms 
One of the major problems one runs into when designing a 

lock-free linked list as stated earlier is the fact that one cannot 

easily control both the right pointer of the node that is to be 

deleted and the right pointer of its preceding node at the same 

time using a simple C&S primitive. It can be done with a 

stronger double compare- and-swap primitive [1]. To counter 

these challenges, one can use the technique of Harris’s 

implementation [6]. Instead of applying Compare and Swap’s 

(C&S) to the right pointer of the node, apply it to the 

successor field, which consists of a right pointer and a mark 

bit. 

Another solution to the challenges is the introduction of 

back_link pointers, similar to the ones proposed by Valois 

[10]. This is then used to replace the mark bits, so that the 

successor field consists of a right pointer and a back_link. If 

the node has a null back_link pointer, it is not marked, 

otherwise it is. In the marking stage of a deletion, a process 

would set the back_link of the node to be deleted to point to 

the preceding node, using C & S on the node’s successor 

filed. The simple introduction of back_links does not yield a 

data structure with good performance. One of the ways to do 

so is to ensure that whenever a back_link is set, it is pointing 

to an unmarked node. This is done by introducing one more 

bit known as the flag bit to reflect the status of the node. The 

algorithm for the three major routines: Search, Delete and 

Insert, are shown in Fig. 3, Fig.5 and Fig 6 respectively. 

 

 

 

 

 

 

 

 

 

Fig 3: Search Routine 

 

 

Search (Key k): Node 

1. (curr_node, next_node) = SearchFrom(k, head) 

2 .If (curr_node.key = k) 

3. return curr_node 

4 .Else 

5. return NO_SUCH_KEY 

12 99 37 

http://en.wikipedia.org/wiki/List_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Queue_%28abstract_data_type%29
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/S-expression
http://en.wikipedia.org/wiki/Array_data_structure
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SearchFrom (Key k, Node *curr_node): (Node, Node) 

1 next_node = curr_node.right 

2 while (next_node.key <= k) 

3 while (next_node.mark == 1 && (curr_node.mark == 0 || curr_node.right != next_node)) 

4 if (curr_node.right == next_node) 

5 HelpMarked(curr_node, next_node) 

6 next_node = curr_node.right 

7 if (next_node.key <= k) 

8 curr_node = next_node 

9 next_node = curr_node.right 

10 return (curr_node, next_node) 

Fig 4: Search from Routine 

 

Delete(Key k): Node 

1 (prev_node, del_node) = SearchFrom(k – e, head) 

2 if (del_node.key != k) // k is not found in the list 

3 return NO_SUCH_KEY 

4 (prev_node, result) = TryFlag(prev_node, del_node) 

5 if (prev_node != null) 

6 HelpFlagged(prev_node, del_node) 

7 if (result == false) 

8 return NO_SUCH_KEY 

9 return del_node 

Fig 5: Delete Routine 

 

The SearchFrom routine is used to perform the searches in the 

data structure. This routine takes a key and a node as its 

arguments. It traverses the list starting from the specified 

node, looking for the first node with a key strictly greater than 

the specified key. This routine calls the SearchFrom routine in 

its first line, then used the first of the two nodes returned to 

determine if there is a node with key k in the list. The Insert 

routine (Fig. 6) first calls SearchFrom to find where to insert 

the new key. SearchFrom returns a pair of node pointers 

prev_node and next_node such that prev_node.key ≤ k < 

next_node.key. Insert compares the key of prev_node to the 

new key it is trying to insert, and if they are not equal, it 

creates a new node since it is requirement that all the keys are 

to be unique, and enters the loop in lines 5-23, from which it 

can only exit if it successfully inserts the new node or another 

process inserts a node with the same key (lines 20-22). The 

Delete routine in Fig 5, performs a three-step deletion of the 

node. If the deletion is successful, Delete returns a pointer to 

the deleted node, otherwise it returns NO_SUCH_KEY. A 

successful deletion is linearized when the marking is 

performed. The Linked List Workshop application provides 

the three main list operations presented in Java. The three 

main routines are the same operations presented in The 

Linked List Workshop application. Fig. 7 shows how the Link 

List Workshop application looks when it’s started. Initially, 

there are sixty (60) data elements on the list generated 

automatically.
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Insert (Key k, Elem e): Node 

1 (prev_node, next_node) = SearchFrom(k, head) 

2 if (prev_node.key == k) 

3 return DUPLICATE_KEY 

4 newNode = new node(key = k, elem = e) 

5 loop 

6 prev_succ = prev_node.succ 

7 if (prev_succ.flag == 1) 

8 HelpFlagged(prev_node, prev_succ.right) 

9 else 

10 newNode.succ = (next_node, 0, 0) 

11 result = c&s(prev_node.succ, (next_node, 0, 0), (newNode, 0, 0)) 

12 if (result == (newNode, 0, 0)) // SUCCESS 

13 return newNode 

14 else // FAILURE 

15 if (result == (*, 0, 1)) // failure due to flagging 

16 HelpFlagged(prev_node, result.right) 

17 while (prev_node.mark == 1) // possibly a failure due to marking 

18 prev_node = prev_node.back_link 

19 (prev_node, next_node) = SearchFrom(k, prev_node) 

20 if (prev_node.key == k) 

21 free newNode 

22 return DUPLICATE_KEY 

23 end loop 

Fig 6: Insert Routine 

 

 

Fig 7: Linked List Workshop Application 
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4. ANALYSIS 
This section is the description of the implementation, 

empirical evidence and the experimental proof of the 

correctness of the proposed algorithms. There are several 

invariants and definitions that hold throughout the execution 

and experimentation. The definitions of these terms are given 

below. 

 Def. 1: A preinserted node is a node that was 

created, but has not yet been inserted into the list.  

 Def. 2: A node is regular if it is unmarked, and it is 

not a preinserted node. 

 Def. 3: A node is logically deleted if it is marked 

and has a regular node linked to it. 

 Def. 4: A node is physically deleted if it is marked 

and there is no regular node linked to it. 

 Inv 1: Keys are strictly sorted: For any two nodes 

n1, n2, if n1.right = n2, then n1.key < n2.key. 

 Inv 2: The union of regular and logically deleted 

nodes forms a linked list structure with head being 

the first node and tail being the last node. 

 Inv 3: For any logically deleted node, its 

predecessor is flagged (and unmarked), and its 

successor is not marked. 

 Inv 4: For any logically deleted node, its back_link 

is pointing to its predecessor, i.e. if n is logically 

deleted, and m is a node of the list such that m is not 

physically deleted and m.right = n, then n.back_link 

= m. 

 Inv 5: No node can be both marked and flagged at 

the same time, i.e. there is no node n such that 

n.succ = (*, 1, 1). 

 

Theorem 1: Invariant 5 always holds. 

The invariant obviously holds for an empty list. When a new 

node is created, its successor pointer is set to be unflagged and 

unmarked (line 10 in Insert), and it does not change until the 

node is inserted into the list. 

Theorem 2: Invariants 1-3 always hold. 

Initially the list contains no keys and all the invariants 

obviously hold. The algorithms modify the data structure only 

by performing C&S operations or by setting back_links in 

line 1 of HelpFlagged routine. By other auxiliary Propositions 

4, 7, 8, and 11 none of these four C&S operations can violate 

invariants 1-3, so they always hold. 

 

Theorem 3: Inv 4 always holds. 

This invariant obviously holds in the beginning when the list 

is empty. It can also be prove that if it holds before a 

modification, it will hold afterwards as well. It has been prove 

that the modification below cannot violate Inv 4. 

 

The C&S in the Insert routine is result = c&s(prev_node.succ, 

(next_node, 0, 0), (newNode, 0, 0)). Immediately before the 

C&S prev_node is not flagged, and thus by Inv 3, next_node 

is not marked. Also, when the C&S is performed, newNode is 

not marked. Thus this C&S preserves Inv 4. 

 

 

 

 

Theorem 4 (Delete correctness) 

 If an execution of the Delete (k) routine returns 

NO_SUCH_KEY (indicating an unsuccessful deletion), then 

for this execution we can choose a linearization point, at 

which there was no regular node with key k in the data 

structure. If an execution of the Delete (k) routine returns a 

pointer to a node (indicating a successful deletion), then for 

this execution we can choose a linearization point, at which 

this node became marked. 

 

Theorem 5 (Insert correctness):  

If an execution of the Insert(k, e) routine returns 

DUPLICATE_KEY (indicating an unsuccessful insertion), 

then for this execution we can choose a linearization point, at 

which there was a regular node with key k in the data 

structure. If an execution of the Insert(k, e) routine returns a 

pointer to a node (indicating a successful insertion), then the 

node’s key is equal to k, and for this execution we can choose 

a linearization point, at which this node gets inserted, 

becoming a regular node. 

 

Theorem 6 (Search correctness) 

If an execution of the Search(k) routine returns 

NO_SUCH_KEY, then we can choose a linearization point, at 

which there was no regular node with key k in the data 

structure. If an execution of the Search(k) routine returns a 

pointer to a node, then the key of this node is k, and for this 

execution we can choose a linearization point, at which this 

node was a regular node. 

 

5. CONCLUSION 
This research is aimed at presenting a novel implementation 

of linked-lists which is non-blocking, linearizable and which 

is based on the compare-and-swap (CAS) operation found on 

contemporary processors. The presented algorithms 

(searching, insertion, and deletion) exploit a fine granularity 

synchronization strategy to significantly outperform existing 

algorithms, particularly for long linked lists and skip list data 

structures.  

The use of COMPARE & SWAP to swing pointers is 

susceptible to the ABA problem. The solution relies on the 

careful memory management and in particular the use of two 

operations-SAFEREAD and RELEASE. Also the 

implementing the algorithm in a desired programming 

language such as an Assembly language required a high level 

of expertise.  

Possible areas of future research include extensions to other 

linked data structures. The idea of localizing concurrency 

control can also be applied to structures such as trees, heaps 

and graphs. It remains to carefully develop the necessary 

algorithms. Application of non-blocking structures in new 

areas (e.g. parallel databases) is also of interest as is the idea 

of applying Barnes’ “operation completion” concept to the 

algorithm to decrease the number of conflicts. 
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