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ABSTRACT 
Genetic algorithms have been proven to be both an efficient 

and effective means of solving certain types of search and 

optimization problems. Genetic algorithms have been applied 

with positive results in many areas including scheduling 

problems, neural networking, face recognition and other NP-

complete problems. The idea behind GA´s is to extract 

optimization strategies nature uses successfully - known 

as Darwinian Evolution - and transform them for application 

in mathematical optimization theory to find the global 

optimum in a defined phase space. Another popular way to 

improve genetic algorithms is to run them in parallel, some 

parallel genetic algorithms have performed very well 

compared to the standard non-parallel genetic algorithm. 

Parallel genetic algorithms focus their efforts at simulating 

multiple species and include not only the standard operations 

for crossover and mutation but also operations for migration 

between different populations. 

Genetic algorithm (GA) which is a meta-heuristic algorithm 

has been successfully applied to solve the scheduling 

problem. The fitness evaluation is the most time consuming 

GA operation for the CPU time, which affects the GA 

performance. This paper proposes and implements a 

synchronous master-slave parallelization where the fitness 

evaluated in parallel. The rest of paper organized as follow: 

genetic algorithm, parallel genetic algorithm, proposed 

algorithm, theoretical analysis, practical analysis, and 

conclusion. 
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1. INTRODUCTION 
Genetic algorithms (GA) were first introduced by John 

Holland in the 1970s (Holland 1975) as a result of 

investigations into the possibility of computer programs 

undergoing evolution in the Darwinian sense [2]. GA are part 

of a broader soft computing paradigm known as evolutionary 

computation. They attempt to arrive at optimal solutions 

through a process similar to biological evolution [3]. This 

involves following the principles of survival of the fittest, and 

crossbreeding and mutation to generate better solutions from a 

pool of existing solutions [4]. Genetic algorithms have been 

found to be capable of finding solutions for a wide variety of 

problems for which no acceptable algorithmic solutions exist. 

The GA methodology is particularly suited for optimization, a 

problem solving technique in which one or more very good 

solutions are searched for in a solution space consisting of a 

large number of possible solutions [5]. GA reduce the search 

space by continually evaluating the current generation of 

candidate solutions, discarding the ones ranked as poor, and 

producing a new generation through crossbreeding and 

mutating those ranked as good [7]. The ranking of candidate 

solutions is done using some pre-determined measure of 

goodness or fitness.  

2. DETAILS OF GENETIC 

ALGORITHM 
A genetic Algorithm is an iterative procedure maintaining a 

population of structures that are candidate solutions to specific 

domain challenges.  During  each temporal increment (called 

a generation), the  structures  in the  current  population are 

rated for their effectiveness as  domain  solutions,  and on the 

basis of these evaluations, a new population  of  candidate  

solutions is formed using specific genetic operators such as  

reproduction, crossover, and mutation. They  combine  

survival  of  the fittest among  string  structures  with  a 

structured  yet randomized information exchange to form a  

search  algorithm  with  some  of  the  innovative  flair  of  

human  search.   In  every generation, a new set of artificial 

creatures (strings) is created using  bits and  pieces  of  the 

fittest of the old; an occasional new  part  is  tried  for good  

measure.   While randomized, genetic algorithms are no 

simple random walk.   They efficiently exploit historical 

information to speculate on new search points with expected 

improved performance. 

2.1 Working of genetic algorithm 
 In the GA, each chromosomes are subjected to an iterative 

evolutionary process until a minimum the termination 

condition is met. The evolutionary process is carried out as in 

ordinary GA using genetic operators (crossover, mutation) 

and selection operations on chromosomes for reproduction. At 

every generation stage, parents are selected for mating and 

reproduction. A problem specific crossover operator that 

ensures solutions generated through genetic evolution are all 

feasible is also proposed. Hence both checking of the 

constraints and repair mechanism can be avoided, thus 

resulting in increased efficiency. Mutation is used to keep 

diversity in the population. Working of GA is shown in the 

following algorithm. 

GENETIC ALGORITHM 

Start 

Read problem instance data 

Set GA parameters 

Initialize population 

Initialize generation as one 

Set max_generation:=N 

while (generation <= max_generation) 

Decode and evaluate chromosomes in the population 

Apply selection procedure 

Apply genetic operators 
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if new chromosomes are better than worse chromosome 

in the population 

then 

 place new chromosome in place of worse chromosome 

end if 

generation :=generation+1 

end while 

End 

3. PARALLEL GENETIC ALGORITHM 
A parallel genetic algorithm (PGA) is presented as a solution 

to the problem of real time versus genetic search encountered 

in genetic algorithms with large populations [8].  PGA 

Performing  fitness evaluations in parallel will obviously 

result in an increase in speed of the algorithm roughly 

proportional to the number of processors used. There are, 

however, reasons for performing GAs in parallel that are 

believed to give improved performance [1]. If GA is  

considered as simply a model of natural systems then some 

parallel implementations can be viewed as consisting of 

separate sub-populations evolving independently of each 

other, with occasional migration allowed between these sub-

populations [1]. PGAs can be divided into three general 

classes, Coarse-grained, Fine-Grained, and Master-Slave. 

3.1 The master-slave model 
In the master-slave model the master runs  the evolutionary 

algorithm, controls the slaves and distributes the work. The 

slaves take batches of individuals from the master and 

evaluate them. Finally send the calculated fitness value back 

to master. 

 

Fig.1 Master-Slave model 

3.2 Coarse-grained PGA 
The population is divided into a few large subpopulations. 

Each of these subpopulations are maintained by different 

processors and some selected individuals are exchangeable 

via a migration operator. The model is known as Island model 

or distributed PGA and subpopulation called deme [10,14]. 

This models are usually implemented on distributed memory 

MIMD computers[15]. Island model is a popular and effective 

parallel genetic algorithm [12] and also reduces probability of 

premature convergence [11] – finding the local instead of the 

global optimum. 

 
Fig.2 Coarse-grained PGA 

3.3 Fine-grained PGA  
The population is separated into a large number of very small 

subpopulations, which are maintained by different processors 

[8]. The subpopulation may be only an individual. This model 

is suitable for massively parallel architectures – machines 

consisting of a huge number of basic processors and 

connected with a specific high speed topology [8,14]. The 

computer structure limits an interaction between individuals. 

This model is machine dependent like Master-Slave PGA. 

 

Fig.3 Fine-grained PGA 

4. COMPUTATIONAL RESULTS 
The proposed parallel genetic uses master-slave GAs 

parallelization. A master is the main processor store the full 

population of chromosomes and assigns a certain fraction of 

the individuals to slave processors, where the slaves evaluate 

fitness value for the assigned fraction and return their values. 

The parallelized done only on the fitness evaluation as the 

fitness of an individual is independent from the rest of the 

population, and there is no need to communicate during this 

phase. The crossover probability0.6, mutation probability: 

0.01 and tournament size:3. This algorithm has been 

implemented using java threads in a shared memory 

environment. For analyzing the performance of the algorithm, 

different strategies have been used. The result represents  

average runs among 10 runs and the result is in sec. 

Table 1. Comparison of GA and PGA 

Population 

size 

No. of  genera- -

tions 4, no. of 

processors 2, no. of 

tasks:10 

No. of  genera- -

tions 8, no. of 

processors 18, no. of 

tasks: 24 

GA PGA GA PGA 

10,000 304 302 287 281 

50,000 6520 6404 5895 5765 

60,000 8848 8737 7345 7325 
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5. CONCLUSION 
According to the obtained results, the proposed parallel 

algorithm outperforms the sequential algorithm in case of 

complex and high number of generation problems. In smaller 

problems, it is not preferred to use the parallel algorithms. 

Using the asynchronies may give a better performance since it 

will never have to wait for all processors to finish their tasks. 

As a future work, another proposed heuristic, meta-heuristic 

or evolutionary algorithm could be used. The parallel 

implementation of the algorithm could be compared with the 

proposed one, and the results will be compared in terms of 

accuracy and performance. 

6. REFERENCES 
[1] Abtin Hassani ... Box 883. Västerås, Sweden 

han03007@student.mdh.se. Jonatan Treijs.Mälardalen's 

University. Box 883. Västerås, Sweden 

jts05002@student.mdh.se ... in parallel. 

[2] Dhar, V., & Stein, R., Seven Methods for Transforming 

Corporate Data into Business Intelligence., Prentice Hall  

1997, pp. 126-148, 203-210. 

[3] Goldberg, D. E., Genetic and Evolutionary Algorithms 

Come of Age, Communications of the ACM, Vol.37, 

No.3, March 1994, pp.113-119.  

[4] Holland, J. H., Adaptation in Natural and Artificial 

Systems, Univ. of Michigan Press, 1975. 

[5] Kingdon, J., Intelligent Systems and Financial 

Forecasting, Springer Verlag, London 1997. 

[6] Medsker,L., Hybrid Intelligent Systems, Kluwer 

Academic Press, Boston 1995. 

[7] Michalewicz, Z., Genetic Algorithms + Data Structures 

= Evolution Programs, Springer-Verlag, Berlin 1996. 

[8] Pettey, C.B.Leuze, M.R.Grefenstette, J.J. Parallel genetic 

algorithm [1987] Genetic algorithms and their 

applications: proceedings of the second International 

Conference on Genetic Algorithms : July 28-31, 1987 at 

the Massachusetts Institute of Technology, Cambridge, 

MA.  

[9] Coarse-Grained Parallel Genetic Algorithm for Solving 

the Timetable Problem Shisanu. 

[10] D. Andre, J. R. Koza, “Parallel genetic programming on 

a network of transputers”,In Rosca, Justinian (editor), 

Proceedings of the Workshop on Genetic Programming: 

From Theory to Real-World Applications, University of 

Rochester, National Resource Laboratory for the Study 

of Brain and Behavior, Technical Report 95-2, June 

1995, pp. 111 - 120. 

[11] S-C Lin, W.F. Punch and E.D. Goodman, “Coarse- grain 

Genetic Algorithms, Categorization and New 

Approaches”, Sixth IEEE Parallel and Distributed 

Processing Oct 1994, pp.28-37. 

[12] D.Whitley, S. Rana and R. B. Heckendorn, “Island 

Model Genetic Algorithms and Linearly Separable 

Problems”,Proceedings of the AISB Workshop on 

Evolutionary Computation, 1997. 

[13] Garey, M. R., Johnson, D. S. 1979. Computers and 

Intractability, A Guide to The Theory of NP-

Completeness, W. H. Freeman and Company. 

[14] Abtin Hassani, Jonatan Treijs, “An Overview of 

Standard and Parallel Genetic Algorithms”. 

[15] B. S. P. Mishra, S. Dehuri, R. Mall, A. Ghosh, “Parallel 

Single and Multiple Objectives Genetic Algorithms: A 

Survey”. International Journal of Applied Evolutionary 

Computation, 2(2), 21-58, April-June 2011 21. 

 

IJCATM : www.ijcaonline.org 


