
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.6, November 2017

7

An overview of GA and PGA

R. K. Nayak
School of Computer Engg. KIIT

University

B. S. P. Mishra, PhD
School of Computer Engg.

KIIT University

Jnyanaranjan Mohanty, PhD
School of Computer Application,

KIIT University

ABSTRACT
Genetic algorithms have been proven to be both an efficient

and effective means of solving certain types of search and

optimization problems. Genetic algorithms have been applied

with positive results in many areas including scheduling

problems, neural networking, face recognition and other NP-

complete problems. The idea behind GA´s is to extract

optimization strategies nature uses successfully - known

as Darwinian Evolution - and transform them for application

in mathematical optimization theory to find the global

optimum in a defined phase space. Another popular way to

improve genetic algorithms is to run them in parallel, some

parallel genetic algorithms have performed very well

compared to the standard non-parallel genetic algorithm.

Parallel genetic algorithms focus their efforts at simulating

multiple species and include not only the standard operations

for crossover and mutation but also operations for migration

between different populations.

Genetic algorithm (GA) which is a meta-heuristic algorithm

has been successfully applied to solve the scheduling

problem. The fitness evaluation is the most time consuming

GA operation for the CPU time, which affects the GA

performance. This paper proposes and implements a

synchronous master-slave parallelization where the fitness

evaluated in parallel. The rest of paper organized as follow:

genetic algorithm, parallel genetic algorithm, proposed

algorithm, theoretical analysis, practical analysis, and

conclusion.

Keywords
Genetic Algorithm, Parallel Generic Algorithm, Dual Species,

Genetic Algorithm, Search Algorithm, Path finding, GA,

PGA, DSGA

1. INTRODUCTION
Genetic algorithms (GA) were first introduced by John

Holland in the 1970s (Holland 1975) as a result of

investigations into the possibility of computer programs

undergoing evolution in the Darwinian sense [2]. GA are part

of a broader soft computing paradigm known as evolutionary

computation. They attempt to arrive at optimal solutions

through a process similar to biological evolution [3]. This

involves following the principles of survival of the fittest, and

crossbreeding and mutation to generate better solutions from a

pool of existing solutions [4]. Genetic algorithms have been

found to be capable of finding solutions for a wide variety of

problems for which no acceptable algorithmic solutions exist.

The GA methodology is particularly suited for optimization, a

problem solving technique in which one or more very good

solutions are searched for in a solution space consisting of a

large number of possible solutions [5]. GA reduce the search

space by continually evaluating the current generation of

candidate solutions, discarding the ones ranked as poor, and

producing a new generation through crossbreeding and

mutating those ranked as good [7]. The ranking of candidate

solutions is done using some pre-determined measure of

goodness or fitness.

2. DETAILS OF GENETIC

ALGORITHM
A genetic Algorithm is an iterative procedure maintaining a

population of structures that are candidate solutions to specific

domain challenges. During each temporal increment (called

a generation), the structures in the current population are

rated for their effectiveness as domain solutions, and on the

basis of these evaluations, a new population of candidate

solutions is formed using specific genetic operators such as

reproduction, crossover, and mutation. They combine

survival of the fittest among string structures with a

structured yet randomized information exchange to form a

search algorithm with some of the innovative flair of

human search. In every generation, a new set of artificial

creatures (strings) is created using bits and pieces of the

fittest of the old; an occasional new part is tried for good

measure. While randomized, genetic algorithms are no

simple random walk. They efficiently exploit historical

information to speculate on new search points with expected

improved performance.

2.1 Working of genetic algorithm
 In the GA, each chromosomes are subjected to an iterative

evolutionary process until a minimum the termination

condition is met. The evolutionary process is carried out as in

ordinary GA using genetic operators (crossover, mutation)

and selection operations on chromosomes for reproduction. At

every generation stage, parents are selected for mating and

reproduction. A problem specific crossover operator that

ensures solutions generated through genetic evolution are all

feasible is also proposed. Hence both checking of the

constraints and repair mechanism can be avoided, thus

resulting in increased efficiency. Mutation is used to keep

diversity in the population. Working of GA is shown in the

following algorithm.

GENETIC ALGORITHM

Start

Read problem instance data

Set GA parameters

Initialize population

Initialize generation as one

Set max_generation:=N

while (generation <= max_generation)

Decode and evaluate chromosomes in the population

Apply selection procedure

Apply genetic operators

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.6, November 2017

8

if new chromosomes are better than worse chromosome

in the population

then

 place new chromosome in place of worse chromosome

end if

generation :=generation+1

end while

End

3. PARALLEL GENETIC ALGORITHM
A parallel genetic algorithm (PGA) is presented as a solution

to the problem of real time versus genetic search encountered

in genetic algorithms with large populations [8]. PGA

Performing fitness evaluations in parallel will obviously

result in an increase in speed of the algorithm roughly

proportional to the number of processors used. There are,

however, reasons for performing GAs in parallel that are

believed to give improved performance [1]. If GA is

considered as simply a model of natural systems then some

parallel implementations can be viewed as consisting of

separate sub-populations evolving independently of each

other, with occasional migration allowed between these sub-

populations [1]. PGAs can be divided into three general

classes, Coarse-grained, Fine-Grained, and Master-Slave.

3.1 The master-slave model
In the master-slave model the master runs the evolutionary

algorithm, controls the slaves and distributes the work. The

slaves take batches of individuals from the master and

evaluate them. Finally send the calculated fitness value back

to master.

Fig.1 Master-Slave model

3.2 Coarse-grained PGA
The population is divided into a few large subpopulations.

Each of these subpopulations are maintained by different

processors and some selected individuals are exchangeable

via a migration operator. The model is known as Island model

or distributed PGA and subpopulation called deme [10,14].

This models are usually implemented on distributed memory

MIMD computers[15]. Island model is a popular and effective

parallel genetic algorithm [12] and also reduces probability of

premature convergence [11] – finding the local instead of the

global optimum.

Fig.2 Coarse-grained PGA

3.3 Fine-grained PGA
The population is separated into a large number of very small

subpopulations, which are maintained by different processors

[8]. The subpopulation may be only an individual. This model

is suitable for massively parallel architectures – machines

consisting of a huge number of basic processors and

connected with a specific high speed topology [8,14]. The

computer structure limits an interaction between individuals.

This model is machine dependent like Master-Slave PGA.

Fig.3 Fine-grained PGA

4. COMPUTATIONAL RESULTS
The proposed parallel genetic uses master-slave GAs

parallelization. A master is the main processor store the full

population of chromosomes and assigns a certain fraction of

the individuals to slave processors, where the slaves evaluate

fitness value for the assigned fraction and return their values.

The parallelized done only on the fitness evaluation as the

fitness of an individual is independent from the rest of the

population, and there is no need to communicate during this

phase. The crossover probability0.6, mutation probability:

0.01 and tournament size:3. This algorithm has been

implemented using java threads in a shared memory

environment. For analyzing the performance of the algorithm,

different strategies have been used. The result represents

average runs among 10 runs and the result is in sec.

Table 1. Comparison of GA and PGA

Population

size

No. of genera- -

tions 4, no. of

processors 2, no. of

tasks:10

No. of genera- -

tions 8, no. of

processors 18, no. of

tasks: 24

GA PGA GA PGA

10,000 304 302 287 281

50,000 6520 6404 5895 5765

60,000 8848 8737 7345 7325

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.6, November 2017

9

5. CONCLUSION
According to the obtained results, the proposed parallel

algorithm outperforms the sequential algorithm in case of

complex and high number of generation problems. In smaller

problems, it is not preferred to use the parallel algorithms.

Using the asynchronies may give a better performance since it

will never have to wait for all processors to finish their tasks.

As a future work, another proposed heuristic, meta-heuristic

or evolutionary algorithm could be used. The parallel

implementation of the algorithm could be compared with the

proposed one, and the results will be compared in terms of

accuracy and performance.

6. REFERENCES
[1] Abtin Hassani ... Box 883. Västerås, Sweden

han03007@student.mdh.se. Jonatan Treijs.Mälardalen's

University. Box 883. Västerås, Sweden

jts05002@student.mdh.se ... in parallel.

[2] Dhar, V., & Stein, R., Seven Methods for Transforming

Corporate Data into Business Intelligence., Prentice Hall

1997, pp. 126-148, 203-210.

[3] Goldberg, D. E., Genetic and Evolutionary Algorithms

Come of Age, Communications of the ACM, Vol.37,

No.3, March 1994, pp.113-119.

[4] Holland, J. H., Adaptation in Natural and Artificial

Systems, Univ. of Michigan Press, 1975.

[5] Kingdon, J., Intelligent Systems and Financial

Forecasting, Springer Verlag, London 1997.

[6] Medsker,L., Hybrid Intelligent Systems, Kluwer

Academic Press, Boston 1995.

[7] Michalewicz, Z., Genetic Algorithms + Data Structures

= Evolution Programs, Springer-Verlag, Berlin 1996.

[8] Pettey, C.B.Leuze, M.R.Grefenstette, J.J. Parallel genetic

algorithm [1987] Genetic algorithms and their

applications: proceedings of the second International

Conference on Genetic Algorithms : July 28-31, 1987 at

the Massachusetts Institute of Technology, Cambridge,

MA.

[9] Coarse-Grained Parallel Genetic Algorithm for Solving

the Timetable Problem Shisanu.

[10] D. Andre, J. R. Koza, “Parallel genetic programming on

a network of transputers”,In Rosca, Justinian (editor),

Proceedings of the Workshop on Genetic Programming:

From Theory to Real-World Applications, University of

Rochester, National Resource Laboratory for the Study

of Brain and Behavior, Technical Report 95-2, June

1995, pp. 111 - 120.

[11] S-C Lin, W.F. Punch and E.D. Goodman, “Coarse- grain

Genetic Algorithms, Categorization and New

Approaches”, Sixth IEEE Parallel and Distributed

Processing Oct 1994, pp.28-37.

[12] D.Whitley, S. Rana and R. B. Heckendorn, “Island

Model Genetic Algorithms and Linearly Separable

Problems”,Proceedings of the AISB Workshop on

Evolutionary Computation, 1997.

[13] Garey, M. R., Johnson, D. S. 1979. Computers and

Intractability, A Guide to The Theory of NP-

Completeness, W. H. Freeman and Company.

[14] Abtin Hassani, Jonatan Treijs, “An Overview of

Standard and Parallel Genetic Algorithms”.

[15] B. S. P. Mishra, S. Dehuri, R. Mall, A. Ghosh, “Parallel

Single and Multiple Objectives Genetic Algorithms: A

Survey”. International Journal of Applied Evolutionary

Computation, 2(2), 21-58, April-June 2011 21.

IJCATM : www.ijcaonline.org

