
International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.6, November 2017

14

P Systems Generating Pattern Languages

Christopher Kezia
Parimalam

Department of Mathematics
Queen Mary’s College

Chennai-600004

Emerald Princess Sheela
J. D.

Department of Mathematics
Queen Mary’s College

Chennai-600004

D. G. Thomas
Department of Mathematics
Madras Christian College

Chennai 600 059

ABSTRACT

P system is an interesting computing model of natural

computing exhibiting very nice decidability and complexity

results. As a language generating device, P system produces

formal languages. In this paper, a variant of P system called

rewriting P system is considered and its generative power of

yielding pattern languages is investigated.

General Terms
Membrane structure, P systems, context free grammars,

languages

Keywords

Pattern grammars, rewriting P systems with unique

parallelism

1. INTRODUCTION
The theory of P system (or membrane computing) is a recent

and intensively investigated area of Natural computing, a field

of research which tries to imitate nature in the way it

computes. Neural networks, Generic algorithms and DNA

computing are three areas of Natural computing already well

established. Paun [1] introduced a new computability model,

called a P system, which is a distributed highly parallel

theoretical model based on membrane structure and the

behavior of living cells. The basic model processes multi-sets

of objects in the regions that are defined by hierarchical

arrangement of membranes, by evolution rules associated with

the regions. One of the branches of membrane computing is

rewriting P system [2] in which objects in membranes are

described by strings and these strings are processed by

rewriting rules or other string manipulating operations.

A pattern grammar is a generative device starting from a finite

set of given strings called axioms and replacing them by the

variables in a given set of patterns and continuing the process

with the current set of strings obtained by such operations.

The class of pattern languages generated by pattern grammar

is incomparable with a class of context free languages. A

pattern grammar is also a generalization of Marcus contextual

grammars [3].

In [4] a P system for generating pattern languages with single

pattern is defined. We now extend our study to define P

system for generating pattern grammars with more than one

pattern variable and more than one axiom.

2. PRELIMINARIES
A pattern language is a string over where is a finite

alphabet and is a finite set of elements called variables. We

obtain the pattern language by substituting in the pattern all

the occurrences of variable by arbitrary strings in In this

section we recall the notions of pattern grammar and a P
system.

Definition 2.1A pattern grammar [2] is a quadruple

G = (, ,A, P)

Where, ∑, Δ are alphabets as above, A , is a finite set (its

elements are called axioms) and P is a finite subset of (
)* Δ ,. The strings in P are called patterns (every pattern

must contain at least one variable occurrence). For a set P of

patterns and a language L , denote

P(L) =

{ ,

 , 1

(P (L) is the set of strings obtained by replacing each

occurrence of variables in patterns of P by strings in L, the

different occurrences of the same variable being replaced by

the same string.)

The language generated by G, denoted by L (G) is the smallest

language L ∑* for which we have

i. A

ii. P(L)

Thus, L(G) consists of all strings which can be obtained

starting from axioms and using finitely many times the

patterns, in the way previously described. Note that this

language exists for any A and P, since L(G) = A

A language L(G) as above is called a pattern language and its

family is denoted by PL .

Example 2.1 = (, { }, { }, { })

Starting from ab we obtain in turn, …

L(

Theorem 2.1[3]The family of pattern languages is

incomparable with the family of context free languages.

3. REWRITING P SYSTEM WITH

UNIQUE PARALLELISM
A variant of a rewriting P system called a rewriting P system

with unique parallelism is defined in this section.

Definition 3.1[5]A rewriting P system with unique

parallelism (of degree m ≥ 1) is a construct

Where

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.6, November 2017

15

- V is the total alphabet of the system;

- T is the terminal alphabet;

- is a membrane structure;

- are finite language over V,

representing strings initially present in the regions

1…n of ;

- , is a finite set of rewriting rules of the

form X where X , and tar

 {here, out}

 In a rewriting P system each string which can be rewritten, is

rewritten in each unit time. Since the strings and the rules are

localized to the regions, the strings in a given region are

rewritten only by rules in that region. Thus starting from a

given configuration, we pass to another configuration; a

sequence of transitions form a computation. We consider as

successful computation only the halting ones (the computation

which reach a configuration where no rule can be applied).

The result of a halting computation consists of all strings over

T which are sent out of the system during the computation.

What is specific to this system is the way of rewriting the

strings and to pass them through the membranes. Specifically,

each string is rewritten in a unique parallel manner. For each

string all the occurrences of exactly one symbol is rewritten

according to exactly one rule, which is non-deterministically

chosen between all rules that can be applied to the symbol.

Thus given a string with

 and one context-free rule

 , we obtain the string in

one parallel rewriting step.

 denotes the language generated by a rewriting P system

 The family of all languages of this type, generated by m

membranes, is denoted by . If no bound on the number

of membranes is considered then m is replaced by subscript *.

3.1 Rewriting P System with Unique

Parallelism for Pattern Languages
In this section a P system with unique parallelism (PL)

to generate pattern languages generated by pattern grammars

is defined.

Definition 3.1.1A rewriting P system with unique parallelism

for a pattern language generated by a pattern grammar

 is defined by

where

Vis an alphabet set
 is a special symbol

 is a pattern symbol corresponding to the symbol l .

 is the set of output alphabet

 =

 = {A in

G}

 - {
 for every pattern variable in G

 }

 - (.

The rules are rewritten using rewriting with unique

parallelism. The set of words generated by a rewriting P

system with unique parallelism is denoted by PL(. The

family of all pattern languages generated by systems as

above with at most m membranes is denoted by .

Example 3.1.1 Consider the Pattern grammar G {a,b},

{

The rewriting system with unique parallelism is

 ,

 ,

 }

 (

Theorem 3.1.1For every pattern language generated by a

pattern grammar, there exist a rewriting P system with unique

Parallelism generating it, i.e.

Proof: Consider a pattern grammar with

 – set of alphabet

 – set of pattern variables

 } where

some and some .

The system to generate the L(G) is

 With

T = set of the terminal alphabet

 : 1

 :

 where

 and if .}

 (

Initially all the set of axiom is present in the membrane hence

 Now, the rules of become active and by priority

only can be applied at this stage as there are no
 to start

with. Now a rule from is chosen and each string in , is

rewritten using the rule,
 , the strings which do not

contain remain unaltered. In the next transition rules of

or is applied because of priority.

Case (i) If the rules of are used for rewriting then all the

 s are rewritten in the subsequent steps sequentially, each

step rewrites the
 by an axiom non-deterministically

chosen. Thus the strings terminate where in each string the

halting computation is a word of P(A).

Case (ii) If the rules from are chosen, then each string is

rewritten by the same rules, and at some stage the
 s in the

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.6, November 2017

16

strings should be rewritten using rule as otherwise the

computation will never halt. If is used once and then

terminated by using rules of the computation results in

strings . If rules of are used twice then all the

computations result in strings .

 If there are still strings that can be rewritten, then those are

the strings that did not have a common to be rewritten by

 . Hence the other rules of is used for rewriting and then

 and are chosen as discussed in cases (i) and (ii) resulting

in string belonging to P(A)or P(P(A) or P(P(P(A)). Thus any

halting computation contain strings that belong to P(A)
 . We see that and

 = PL.

Note: When the pattern has only one variable the priority

rules are not needed. If the membranes are increased so that

each variable is active in a particular membrane, then also the

priority rules have no importance.

Example 3.1.2

We construct a rewriting P system

\

 .

3.2 Comparison Results
The generative power of the rewriting P systems for pattern

languages is brought out in the following theorem. The

following Theorem 3.2.1 shows that the rewriting P systems

with unique parallelism for pattern languages with two

membranes is more powerful more than pattern grammars

generating pattern languages.

Theorem 3.2.1 PL (PL).

Proof: allows at most two membranes, the

inclusion in statement (ii) is clear. The proper inclusion is due

to the fact that a language

 cannot be

generated by a pattern grammar [2]. But the following system

in generates L.

 : }

 .

In the above system {
 is a Pattern language with

 as the pattern and {a} the axiom and {
 is a

pattern language with as the pattern and {b} the

axiom.A with two membranes, with membrane 2

inside membrane 1 is constructed. Starting with the pattern

 in the region1, apply the pattern rule to ,

sending the resultant string to region 2 making
 to double

and in region 2, the ’s are doubled using in region 2 and

sent back to region 1 and is terminated using the in , and

the resultant is Since no more rules can be applied, the

string is added to the language. The process repeats and all

strings with equal powers of 2’s in a’s and b’s are generated.

The result is achieved by making an membrane active to only

to one pattern variable.

Fig 1: Rewriting P system with unique parallelism to

generate

Theorem 3.2.2

Proof: Consider the non-context free language

 The rewriting P system with unique

parallelism with two membranes to generate the

above non-context free language is the construct.

 : }

 .

The language cannot be generated by Note that

every word in the language has for some n ‘n’ a’s and b’s

are followed by n c’s. If there are less than two membranes

then the more than one rule of is present in the membranes,

when each ‘a’ and ‘b’ is increased c’s need not be equally

increased and vice versa. This will generate words not in the

given language. Hence one membrane is not enough to

generate the given language.

Theorem3.2.3 For n ,

Proof: Consider a rewriting P system with unique parallelism

for pattern languages

 }

The elementary membranes inside the skin membrane contain

the rules as given below

For 2 ,
}

}

 generates the language {

 . In each

membrane only one pattern variable is raised to the power of

2, and pushed to the next membrane while the rest of the

pattern variables remain the same. In each cycle every pattern

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.6, November 2017

17

variables are raised to the power of 2, which cannot be

generated by membranes less than n.

Theorem3.2.4 CF

Proof: Let G = (N,T,S,P) be a context free grammar with no

null productions. The equivalent unique parallel rewriting P

system for pattern languages is a construct

Where

V= {
T= T

The initial word in the skin membrane is a pattern P which is

the right hand side of the production of the start symbol with

the non-terminals replaced by the corresponding pattern

variable. The rewriting rules in the skin membrane contain all

the rules for Every membrane

contains the rule
 whenever

 contains a non-terminal on the right hand

side is in G. Every membrane other than the Skin membrane

has a rule if is in G and

has no non-terminal on the right hand side In the Skin

membrane the rule is for such a production in G. The

relation L(G) = L(

Hence, .

Example 3.2.1 Consider a context free grammar

 where

 }

The is a construct

 , }

 }

Thus bba : n .

4. CLOSURE PROPERTIES
The family of Pattern languages is not closed under union

with singletons, catenation with singletons, Intersection,

complementation, Kleene+, inverse morphisms [3]. But

Rewriting P system with unique parallelism for Pattern

languages are closed under all the above. The rewriting P

systems with unique parallelism is also closed under the

operation of Union and concatenation.

Theorem 4.1 The rewriting P systems with unique parallelism

for pattern languages are closed under the operations of Union

with singletons, catenation with singletons, Intersection,

complementation, Kleene+, inverse morphism, Union and

concatenation of languages.

Proof:

Closure under Union with Singletons.

Let be a Pattern grammar generating a Pattern

language L(G).There exist a rewriting P system
 such that Let ‘b’

be the singleton there is no Pattern grammar G that can

generate But a rewriting P system with unique

parallelism

generates The construct is done by just

taking the initial strings in union the singleton needed.

Example 4.1

 ; .

But i.e, there is no Pattern grammar G to

generate the given language.

 Define

 is as defined in

Then,

Closure under Catenation with singletons

Let G and be as defined in (1). bL(G) or L(G)b is not a

pattern language. The rewriting P system with unique

parallelism ,

generates This can be obtained by taking the

initial string in the system as {singleton}A U {singleton}P,

where P, are the patterns defined in G.

Example 4.2

Consider

 { }

But is not a PL.

The construct defined by

generates the language

Closure under Intersection

Let and be two

pattern grammars and
and be their

corresponding rewriting P systems with unique parallelism

such that and . L(is

not a pattern language.

But

V=

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.6, November 2017

18

T=

Where is the set of patterns in that produce strings in

Thus, L(

[The same can be done by choosing patterns in and its

rewriting rules.]

Example 4.3

Now)

R= {

 =

Closure under Inverse morphism

Let be a pattern grammar generating PL, and

h: be a morphism defined by h(
 Then

 is not a PL. The construct (PL), defined by

 is a rewriting P system with

unique parallelism where the pattern and the rewriting rules

are defined as follows. For , factorize the word into

 where h(
 ,then there are three

possible cases for ,

(i) If then is a part of the initial string

present in the membrane

(ii) If then there is a pattern variable in the

initial string and a rewriting rule in the

membrane.

(iii) If then there is a pattern variable in the

initial string and a set of rewriting rule
 in the membrane.

The construct

Example 4.4

 ;

Consider a morphism ; defined by

Then = {a is not a pattern language.

We define But

 b}

 = {a

Closure under Kleene +

Let be a pattern grammar generating the

pattern language L= L(G) . The rewriting P system with

unique parallelism Where

 }

 for every i

 for every A

 , for

 every

Thus,

Example 4.5

Let

There is no pattern grammar that generates

Thus,

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.6, November 2017

19

Closure under Union

Proof: Let and be

two pattern grammars generating pattern languages and

and let and

 be their rewriting P

systems with unique parallelism generating and

 respectively.

The generating is defined as

Initially the membrane contains all the axioms and the

patterns in both and which independently generate

strings in and , using rules and

respectively.

Example 4.6

 and

be the pattern grammars generating and

L(the rewriting P systems with unique parallelism

for the pattern languages defined above are

 : }

 : }

The construct for the union of the languages is defined by

 ,

 : }

 Then,

Closure under Concatenation

Let and be as defined in closure under union, then the

rewriting P system with unique parallelism generating

is defined by

 with

the

 }

Initially all concatenated strings of the axioms in both the

languages are present in the membrane. The pattern is the

concatenation of the pattern in the grammar and is rewriting

using their corresponding rules in the P system.

 Thus

Example 4.7

 and

 be the pattern grammars and

the rewriting P systems with unique parallelism for L(and

L() is defined respectively by and as

 : }

 }

 ,

 : }

5. CONCLUSION
In this paper a rewriting P system with unique parallelism has

been introduced to obtain pattern languages. In fact these

pattern languages are generated by pattern grammars with

purely context free rules with m patterns and n pattern

variables. We proved that the generative capacity of such P

systems is higher than that of the pattern grammars. Our

investigation of study is only with unique parallelism. For our

future work we use other parallelism modes. Again in a P

system, the depth is the maximum number of membranes in

the nesting of membranes [6]. In this paper, the results have

been obtained with a depth of the P system equal to 2.

Another direction of future investigation is to increase the

depth of the P system greater than two and study further

properties.

6. ACKNOWLEDGEMENT
The authors wish to thank Dr. T. Robinson for his motivation,

guidance and discussion in preparing this paper.

7. REFERENCES
[1] Paun Gh., 2000 Computing with membranes, Journal of

Computer and System Sciences, 61, 108-143 and Turrku

Center for Computer Science- TUCS Report No.208,

(1998).

[2] M. Mutyam, 2005 Rewriting P systems: improved

hierarchies, Theoretical Computer Science 334,pp 161-

175.

International Journal of Computer Applications (0975 – 8887)

Volume 178 – No.6, November 2017

20

[3] J.Dassow, Gh.Paun, A. Salomaa. 1993 Grammars Based

on Patterns, International Journal of Computer Science,

Vol 4 No: 1, pp 15-30

[4] Christopher Kezia Parimalam, J.D. Emerald, 2014

Learning of P systems for subclass of pattern languages,

Proceedings of the Asian Conference on Membrane

Computing, pp 162-170

[5] Gheorghe Paun, GrzegorzRozenberg, ArtoSalomaa, 2010

The Oxford Handbook of Membrane Computing, Oxford

University Press,pp 168-197.

[6] K.G. Subramanian, S.Hemalatha C. Sri HariNagore, M.

Margenstern, 2007 On the Power of P Systems with

Parallel rewriting and Conditional Communication,

Romanian Journal Of Information Science And

Technology, Volume 10, Number2,PP 137-144.

IJCATM : www.ijcaonline.org

