
International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.2, December 2017

20

Comparison among Five Bio-inspired Optimization

Techniques for Designing Hybrid Optimization

Algorithms

Duc Hoang Nguyen
Faculty of Electrical and Electronics Engineering

HCMC University of Technology
Ho Chi Minh City, Vietnam

ABSTRACT

This paper proposes ideas to create hybrid optimization

algorithms that combines strengths of SFLA or PSO with

strengths of GA, DE or BA. While SFLA or PSO can find

optimal solutions quickly because of directive searching and

exchange of information, GA, DE or BA has higher random

that make it easily escape from local optima to find global

solutions. Thus, hybrid algorithms are able to find optimal

solutions quickly like SFLA or PSO and escape from local

optima like GA, DE or BA. A hybrid SFL-Bees algorithm has

illustrated for these ideas. Numerical simulations carried out

have shown the effectiveness of the proposed algorithm, its

ability to achieve good quality solutions and processing time,

which outperforms the SFLA and BA.

General Terms

Algorithms.

Keywords

Optimization, Hybrid, PSO, SFLA, GA, DE, BA.

1. INTRODUCTION
Optimization problems are very important in practice,

especially in areas such as design engineering, scientific

experiments and making decisions in business. Because of

increasingly complexity of these real-world optimization

problems (non-linear, the number of optimized variable is

large, …), they can’t be solved by traditional methods such as

gradient-based methods, linear-quadratic, … These motivate

other methods based on natural principles and heuristics. One

of these methods are bio-inspired optimization algorithms.

These are randomly searching algorithms, imitate biological

evolution in nature and/or swarm social behaviors.

In this paper, the author uses some bio-inspired algorithms to

optimally tune parameters of fuzzy logic controllers. Basing

on the results obtained, the author will point out the strengths

and weaknesses of each algorithm. From that, strengths of

each algorithm are combined together to create hybrid

algorithms being able to find solutions better than individual

algorithms.

A number of bio-inspired algorithms are very large [1-2]. In

[1], the authors listed about 40 different algorithms and

continue to grow. Among these, the author only concentrates

on five algorithms, that is, GA - Genetic Algorithm, DE -

Differential Evolution (belong to evolutionary-based

optimization algorithms) and PSO - Particle Swarm

Optimization, SFLA - Shuffled Frog Leaping Algorithm, BA -

Bees Algorithm (belong to swarm-intelligence-based

optimization algorithms).

The rest of this paper is organized as follows: section 2

introduces the overview of the GA, DE, PSO, SFLA and BA

algorithms, while section 3 describes how to design and tune

parameters of the fuzzy controller to balance the rotary

inverted pendulum system and simulation results also

presented. Section 4 presents ideas which combines the

strengths of individual algorithms to create hybrid algorithms,

simulation results to illustrate strengths of the suggested

algorithm is also presented and the final section is

conclusions.

2. OVERVIEW OF BIO-INSPIRED

OPTIMIZATION TECHNIQUES

2.1 Genetic Algorithm – GA
Genetic Algorithm is perhaps the most well-known class of

algorithms belonging to evolutionary-based optimization

algorithms. GA is essentially the search algorithm inspired by

the principle of natural selection. The basic idea is to evolve a

population of individuals (also called "chromosomes"), where

each individual represents a candidate solution to a given

problem. Each individual is evaluated by a fitness function,

which measures the quality of its corresponding solution. At

each generation (iteration) the fittest (the best) individuals of

the current population survive and produce offspring

resembling them, so that the population gradually contains

fitter and fitter individuals - i.e., better and better candidate

solutions to the underlying problem. In GA the population of

individuals usually evolves via a selection method, which

selects the best individuals to reproduce, and via genetic

operators such as crossover and mutation, which produce new

offspring out of the selected individuals [3]. In this paper,

BLX- crossover operator is used as (1):

𝑋𝑐
𝑘 𝑗 = random 𝑋𝑐

𝑘 𝑗 , 𝑋 𝑐
𝑘 𝑗 1

With,

𝑋𝑐
𝑘 𝑗 = 𝑚𝑖𝑛 𝑋𝑝1

𝑘 𝑗 , 𝑋𝑝2
𝑘 𝑗 − 𝛼 𝑋𝑝1

𝑘 𝑗 − 𝑋𝑝2
𝑘 𝑗

𝑋 𝑐
𝑘 𝑗 = 𝑚𝑎𝑥 𝑋𝑝1

𝑘 𝑗 , 𝑋𝑝2
𝑘 𝑗 + 𝛼 𝑋𝑝1

𝑘 𝑗 − 𝑋𝑝2
𝑘 𝑗

Where, 𝑋𝑐
𝑘 𝑗 : jth gene of kth individual

 𝑋𝑝1
𝑘 𝑗 , 𝑋𝑝2

𝑘 𝑗 : jth gene of kth parents

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.2, December 2017

21

Flowchart of GA as in Fig. 1.

Fig. 1. Flowchart of the GA

2.2 Differential Evolution – DE
Differential Evolution grew out of Ken Price's attempts to

solve the Chebychev Polynomial fitting problem that had been

posed to him by Rainer Storn [4-5]. DE adopted for various

optimization scenarios including constrained, large-scale,

multi-objective, multimodal and dynamic optimization,

hybridization of DE with other optimizers, and also the multi-

faceted literature on applications of DE [6-11].

DE belongs to the class of evolutionary algorithms which use

bio-inspired operations of crossover, mutation, and selection

on a population in order to minimize an objective function.

These operations will be briefly described in this section.

Mutation: Mutation operator is the prime operator of DE and

it is the implementation of this operation that makes DE

different from other evolutionary algorithms. The mutation

process at each generation begins by randomly selecting three

individuals in the population. There are many mutation

strategies implemented in the DE, however in this paper the

following strategy is used.

𝑉𝑖
𝑘 = 𝑋𝑟0

𝑘 + 𝐹 𝑋𝑟1
𝑘 − 𝑋𝑟2

𝑘 2

Where 𝑋𝑟0
𝑘 , 𝑋𝑟1

𝑘 and 𝑋𝑟2
𝑘 are randomly selected and satisfy:

𝑋𝑟0
𝑘 ≠ 𝑋𝑟1

𝑘 ≠ 𝑋𝑟2
𝑘 ;

Crossover: after the mutation phase is complete, the crossover

process is applied to target vector X and mutated vector V in

order to generate trial vector U by using the equation (3).

𝑈𝑖
𝑘 = 𝑈𝑖

𝑘 𝑗

=
 𝑉𝑖

𝑘 𝑗 𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 0,1 ≤ 𝑝𝑐 𝑜𝑟 𝑗 = 𝑟𝑛𝑏𝑟 𝑖

 𝑋𝑖
𝑘 𝑗 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 3

Selection: The population for the next generation is selected

from the individual in current population and its

corresponding trial vector according to the rule (4).

𝑋𝑖
𝑘+1 =

𝑈𝑖
𝑘 𝑖𝑓 𝑓 𝑈𝑖

𝑘 ≤ 𝑓 𝑋𝑖
𝑘

 𝑋𝑖
𝑘 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 4

Where f(.) is the objective function.

The flowchart of the DE is illustrated in Fig.2. Further

information about DE, refer to [7].

Fig. 2. Flowchart of the DE

2.3 Particle Swarm Optimization – PSO
PSO is a global optimization technique that has been

developed by Eberhart and Kennedy in 1995 [12]. PSO is a

population based search algorithm where each individual is

referred to as particle and represents a candidate solution.

Each particle in PSO flies through the search space with an

adaptable velocity that is dynamically modified according to

its own flying experience and also the flying experience of the

other particles. In PSO each particle strives to improve

itself by imitating traits from their successful peers. Further,

each particle has a memory and hence it is capable of

remembering the best position in the search space ever visited

by it.

Velocity and position of individual particles updated as

follows:

 Create trial vector (2)

 If f(U) > f(X)  U = X (4)

Initialize:
- Population size (n)
- Mutation scale factor (F)
- Crossover probability (pc)

 Generate population (P) randomly

Start

Determine the best solution

 Convergence
 criteria satisfied?

End

 Yes

No

 Evaluate the fitness of (P)

 Crossover X and V  U (3)

Select n individuals based on their fitness

 Mutating offspring

Initialize:
- Population size (n)
- Mutation probability (pm)
- Crossover probability (pc)

 Generate population (P) randomly

Start

 Determine the best solution

 Convergence
 criteria satisfied?

End

 Yes

No

 Evaluate the fitness of (P)

Create offspring from parents by crossover

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.2, December 2017

22

𝑉𝑖
𝑘+1 = 𝜔𝑉𝑖

𝑘 + 𝑐1𝑟𝑎𝑛𝑑1 𝑋𝑝𝑖 − 𝑋𝑖
𝑘 + 𝑐2𝑟𝑎𝑛𝑑2 𝑋𝑔 − 𝑋𝑖

𝑘

(5)

 𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1 (6)

Where:

𝑉𝑖
𝑘+1 : velocity of particle i at loop k+1.

𝑋𝑖
𝑘+1 : position of particle i at loop k+1.

𝜔 : inertia weight.

𝑐1, 𝑐2 : cognitive and social parameters.

𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2: random numbers between 0 and 1.

𝑋𝑝𝑖 : best "remembered" individual particle i position.

𝑋𝑔 : best "remembered" swarm position.

Flowchart of PSO as in Fig. 3.

Fig. 3. Flowchart of the PSO

2.4 Shuffled Frog Leaping Algorithm –

SFLA
The SFLA is a meta-heuristic optimization method that

mimics the memetic evolution of a group of frogs when

seeking for the location that has the maximum amount of

available food. The algorithm contains elements of local

search and global information exchange. The SFLA involves

a population of possible solutions defined by a set of virtual

frogs that is partitioned into subsets referred to as

memeplexes. Within each memeplex, the individual frog

holds ideas that can be influenced by the ideas of other frogs,

and the ideas can evolve through a process of memetic

evolution. The SFLA performs simultaneously an independent

local search in each memeplex using a particle swarm

optimization-like method. To ensure global exploration, after

a defined number of memeplex evolution steps (i.e. local

search iterations), the virtual frogs are shuffled and

reorganized into new memeplexes in a technique similar to

that used in the shuffled complex evolution algorithm.

In addition, to provide the opportunity for random generation

of improved information, random virtual frogs are generated

and substituted in the population if the local search cannot

find better solutions. The local searches and the shuffling

processes continue until defined convergence criteria are

satisfied. The flowchart of the SFLA is illustrated in Fig 4.

The idea updating frog leaping rule which is expressed as:

𝐷 = 𝑟. 𝑐 𝑋𝑏 − 𝑋𝑤 7

𝑋𝑤 𝑛𝑒𝑤 = 𝑋𝑤 + 𝐷 8

where Xb and Xw are identified as the frogs with the best and

the worst fitness respectively; r is a random number between

0 and 1; c is a constant chosen in the range between 1 and 2.

[13-17]

Fig 4: Flowchart of the SFLA

Initialize:

- Population size (n)

- Number of memeplexes (m)

- Number of evolution step within each

memeplex (iter)

 Generate Population (P) randomly

Evaluate the Fitness of (P)

Sort (P) in Descending Order

Partition (P) into m memeplexes

Local search

Iterative updating the

worst frog of each memeplex

Determine the best solution

Convergence

criteria satisfied?

Start

End

Shuffle the memeplexes

Yes

No

If f(X) > f(X
p
)  X

p
 = X

Update velocity (5) and position (6)

Initialize:
- Population size (N)
- Inertia weight (w)
- Cognitive and social parameters (c1, c2)

 Generate population (P) randomly
and velocity is 0

Start

Determine the best solution

 Convergence
 criteria satisfied?

End

 Yes

No

Evaluate the fitness of (P)

If f(Xp) > f(X
g
)  Xg = Xp

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.2, December 2017

23

2.5 Bees Algorithm – BA
The Bees Algorithm is an optimization algorithm inspired by

the natural foraging behavior of honey bees to find the

optimal solution. The algorithm requires a number of

parameters to be set, namely: number of scout bees (n),

number of sites selected out of n visited sites (m), number of

best sites out of m selected sites (e), number of bees recruited

for best e sites (n2), number of bees recruited for the other (m-

e) selected sites (n1), initial size of patches (ngh) which

includes site and its neighborhood and stopping criterion. The

algorithm starts with the n scout bees being placed randomly

in the search space. The fitness of the sites visited by the scout

bees are evaluated. Bees that have the highest fitness are

chosen as “selected bees” and sites visited by them are chosen

for neighborhood search. Then, the algorithm conducts search

in the neighborhood of the selected sites, assigning more bees

to search near to the best e sites. The bees can be chosen

directly according to the fitness associated with the sites they

are visiting. The flowchart of the BA is illustrated in Fig. 5.

[18-19].

Fig 5: Flowchart of the BA

3. TUNING PARAMETERS OF FUZZY

LOGIC CONTROLLER
This section only presents simulation results while details of

design of a fuzzy logic controller for balancing the rotary

inverted pendulum in the upright position refers [20].

Evolution of quadratic performance index in case of tuning 5

and 12 parameters are presented in Fig. 6 and 7.

Fig 6: Evolution of index in case of tuning 5 parameters

 Fig 7: Evolution of index in case of tuning 12 parameters

The following observations can be drawn from the above

objective function plots:

 In case of tuning 5 variables: PSO and SFLA algorithms

give better results in terms of convergent rate and objective

function value (faster convergent rate and smaller objective

function value compared to the remaining algorithms).

Convergent rate of GA and DE algorithms is rather slow. BA

has faster convergent rate and smaller objective function value

compared to GA and DE.

 In case of tuning 12 variables: GA, SFLA and BA have

better convergent rate while GA, DE and BA have better

objective function value. BA has the smallest objective

function value.

From these remarks, it can be concluded that when the

number of optimized variables is small, PSO and SFLA

algorithms find solutions better than GA, DE and BA in terms

of convergent rate and quality of solutions. When the number

of optimized variables is large, GA, DE and BA algorithms

find objective function value better than PSO and SFLA. The

reason is that PSO and SFLA are less random than the

remaining algorithms in searching for optimal solutions.

Worse agents (worse solutions) in PSO and SFLA always

Initialize:

- Population size (n)

- Number of selected sites (m)

- Number of the best sites (e)

- Size of patch (ngh)

 Initialize a population of n scout bees

Start

Determine the Best Solution

Convergence

criteria satisfied?

End

Yes

No

Evaluate the fitness of the population

Assign the (n-m) remaining bees to random search

Select m sites for neighbourhood search

Determine the size of neighbourhood

(patch size)

Recruit Bees for Selected Sites

(more Bees for the e Sites)

Select the fittest bees from each patch

Neighbourhood Search

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.2, December 2017

24

follow better agents (better solutions) to update its position.

Particularly, for PSO method, particles in population always

fly to the best particle (best solution); for SFLA method,

worse frogs always jump to better frog to search for more

food (better solution). However, when agents in population

are closer, they can’t escape from their position and result is

that they are trapped into a position in the solution space.

Hence, PSO and SFLA is premature convergence. Whereas,

update of individuals of GA, DE and BA is more random. So,

these algorithms have slower convergence. For instance, in

GA method, two parents are selected randomly to create

offspring using crossover operator; in DE method, trial vector

is created from 3 randomly selected vectors and crossover

with fourth vector; and, in BA method, the majority of new

bees in population are created randomly. Therefore, as the

number of variables that need to be optimized are large, these

algorithms (GA, DE and BA) have ability of finding better

solutions, they easily escape from local optima compared to

PSO and SFLA methods. However, these don’t mean that GA,

DE and BA methods are completely random. They are also

deterministic. For example, in GA method, only parents

having the best fitness are selected to crossover; or, in BA,

only searching for around the best bees many times to find the

possibly best solution.

4. IDEAS TO DESIGN HYBRID BIO-

INSPIRED OPTIMIZATION METHODS

4.1 Remarks
As presented in section 2, bio-inspired optimization

algorithms are methods which imitate biological evolution of

the creatures in nature or their behavior. Although these

methods have different strategies to solve optimization

problems, they have many similarities. Two features

considered here are local search and global search. As can be

seen from the above overview, all algorithms have local

search and global search operators, however each has distinct

ways to update new individuals. This leads to different

convergent rate and quality of solution. In particular, PSO and

SFLA are less random than the remaining algorithms in

searching for optimal solutions. Bad agents always follow

good agents to update their positon. This makes PSO and

SFLA have fast convergent rate. However, as agents’ position

is closer (Xw and Xb or Xg for SFLA; Xi and Xg or Xp for

PSO), it’s almost unchanged. That means that they are trapped

into a position in the solution space and can’t escape from

their position. Hence, PSO and SFLA is premature

convergence. On the other hand, GA, DE and BA are more

random as finding solutions. This makes GA, DE and BA

have slower convergent rate. However, due to more random

as updating position, these algorithms easily escape from local

optima, especially as the number of individuals in population

is large.

Simulation results in section 3 has proven that these remarks

are right. So, the author has ideas to design hybrid

optimization methods as follows.

4.2 Ideas
From the above remarks, it’s able to see that algorithms have

the faster convergent rate, the easier getting stuck in local

optima, such as PSO and SFLA. On the other hand,

algorithms have slow convergent rate, they’re able to escape

from local optimal, such as GA, DE and BA.

From this conclusion, the author proposed an idea that

combining fast convergent rate of algorithms PSO or SFLA

with ability of escaping from local optima of algorithms GA,

DE or BA to create hybrid algorithms that have ability to

compromise between convergent rate and quality of solution

as solving optimization problems.

To illustrate this idea, the author proposed a hybrid SFLA -

Bees algorithm which combines fast convergent rate of

algorithm SFLA with ability of escaping from local optima of

algorithm BA.

The details of designing this hybrid algorithm are described in

the paper [21]. The author here only presents results.

4.3 Illustration
Below are the results when using the hybrid SFL-Bees

algorithm to find optimal solutions of F7 function. Results

show that mean objective function value of hybrid SFL-Bees

algorithm is greater than value of BA but smaller than value

of SFLA (hybrid SFL-Bees algorithm has strength of BA, i.e.

be able to globally search for solution) and average processing

time of hybrid SFL-Bees algorithm is smaller than time of BA

but greater than time of SFLA (has strength of SFLA, i.e. can

find optimal solution quickly) as demonstrated in Fig. 8 and

Fig.9. Results for F8 function also show strengths of hybrid

SFL-Bees algorithm.

Fig 8: Plot of Processing Time

Fig 9: Plot of Mean value

International Journal of Computer Applications (0975 – 8887)

Volume 179 – No.2, December 2017

25

5. CONCLUSION
In this paper, five bio-inspired optimization techniques have

been overviewed. Strengths and weaknesses of each algorithm

are presented. Based on these results, the author proposed

ideas to create hybrid methods. That is to combine the

strengths of each algorithm together. The author also

illustrates these ideas by proposing a novel algorithm called

Hybrid SFL-Bees Algorithm that combine strengths of SFLA

and BA, namely ability to find global optimal solution

quickly. Simulation results show that hybrid algorithm

outperforms each individual algorithm. The future work is to

combine these algorithms to create more the hybrid

algorithms and apply them for solving other kinds of

optimization problems, for instance, tuning parameters of

fuzzy controller.

6. REFERENCES
[1] Iztok Fister Jr., Xin-She Yang, Iztok Fister, Janez Brest,

Duˇsan Fister, “A Brief Review of Nature-Inspired

Algorithms for Optimization”, Elektrotehniˇski Vestnik

80(3): pp.1–7, 2013.

[2] E. Elbeltagi, T. Hezagy & D. Grierson, “Comparison

among five evolutionary-based optimization algorithms”,

Advanced Engineering Informatics, vol.19, 43-53, 2005.

[3] Evangelos Triantaphyllou and Giovanni Felici, “Data

mining and knowledge discovery approaches based on

rule induction techniques” – Springer, Chapter 12, 2006.

[4] R. Storn and K. Price, “Differential Evolution - A Simple

and Efficient Adaptive Scheme for Global Optimization

over Continuous Spaces,” Tech. Report, International

Computer Science Institute (Berkeley), 1995.

[5] R. Storn and K. Price, “Differential Evolution – A

Simple and Efficient Heuristic for global Optimization

over Continuous Spaces”, Journal of Global

Optimization, vol. 11, Dec. 1997, pp. 341-359.

[6] Neri, F. & Tirronen, “Recent advances in differential

evolution: A survey and experimental analysis”,

Artificial Intelligence Review 33(1-2): 61-106. V. 2010.

[7] Swagatam Das, Sankha Subhra Mullick, and P. N.

Suganthan, “Recent Advances in Differential Evolution –

An Updated Survey”, Swarm and Evolutionary

Computation, Volume 27, April 2016, Pages 1–30.

[8] K. V. Price, R. M. Storn, and J. A. Lampinen,

“Differential Evolution: A Practical Approach to Global

Optimization”, Springer-Verlag, Berlin, Heidelberg,

second edition, 2006

[9] M.-F. Han et al,“Differential evolution with local

information for neuro-fuzzy systems optimization”,

Knowledge-Based Systems 44, 78–89, Elsevier 2013.

[10] Cheng-Jian Lin, Chih-Feng Wu, Hsueh-Yi Lin & Cheng-

Yi Yu, “An Interactively Recurrent Functional Neural

Fuzzy Network with Fuzzy Differential Evolution and Its

Applications”, Sains Malaysiana 44(12)(2015): 1721–

1728.

[11] Patricia Ochoa, Oscar Castillo and José Soria,

"Differential Evolution with Dynamic Adaptation of

Parameters for the Optimization of Fuzzy Controllers",

Recent Advances on Hybrid Approaches for Designing

Intelligent Systems Studies in Computational

Intelligence 547, Springer 2014.

[12] J. Kennedy and R. C. Eberhart.: Particle swarm

optimization. Proceedings of IEEE International

Conference on Neural Networks (Perth, Australia), IEEE

Service Center, Piscataway, NJ,5(3), 1942–1948, (1995).

[13] Muzaffar Eusuff, Kevin Lansey and Fayzul Pasha,

“Shuffled frog-leaping algorithm: a memetic meta-

heuristic for discrete optimization”, Engineering

Optimization Vol. 38, No. 2, March 2006, 129–154.

[14] A. Darvishi, A. Alimardani, B. Vahidi , S.H. Hosseinian,

“Shuffled Frog-Leaping Algorithm for Control of

Selective and Total Harmonic Distortion”, Journal of

Applied Research and Technology, Volume 12, Issue 1,

February 2014, Pages 111–121.

[15] Yi Han, et al,“Shuffled Frog Leaping Algorithm for

Preemptive Project Scheduling Problems with Resource

Vacations Based on Patterson Set”, Journal of Applied

Mathematics,Volume 2013 (2013), Article ID 451090.

[16] Daniel Mora-Melia, Pedro L. Iglesias-Rey, F. Javier

Martínez-Solano and Pedro Muñoz-Velasco, “The

Efficiency of Setting Parameters in a Modified Shuffled

Frog Leaping Algorithm Applied to Optimizing Water

Distribution Networks”, Water 2016, 8, 182, MDPI.

[17] Dina M. Said, Nabil M. Hamed, Almoataz Y. Abdelaziz,

“Shuffled Frog Leaping Algorithm for Economic

Dispatch with Valve Loading Effect”, International

Electrical Engineering Journal, Vol 7 No 3, 30 JUL,

2016.

[18] D.T. Pham, A. Ghanbarzadeh, E. Koç, S. Otri , S. Rahim

and M. Zaidi, “The Bees Algorithm – A Novel Tool for

Complex Optimization Problems”, Manufacturing

Engineering Centre, Cardiff University, Cardiff CF24

3AA, UK.

[19] D.T. Pham, A.Haj Dqrwish, E.E. Eldukhri, and S. Otri.:

Using the Bees Algorithm to tune a fuzzy logic controller

for a robot gymnast. Proceedings of the 3rd Virtual

International Conference on Intelligent Production

Machines and Systems, (2007).

[20] Duc-Hoang Nguyen and Manh-Dung Ngo, “Comparing

convergence of PSO and SFLA optimization algorithms

in tuning parameters of fuzzy logic controller”, AETA

2015.

[21] Duc-Hoang Nguyen, “A Hybrid SFL-Bees Algorithm”,

International Journal of Computer Applications

128(5):13-18, October 2015. Published by Foundation of

Computer Science (FCS), NY, USA.

IJCATM : www.ijcaonline.org

http://www.sciencedirect.com/science/journal/22106502
http://www.sciencedirect.com/science/journal/22106502
http://www.sciencedirect.com/science/journal/22106502
http://www.sciencedirect.com/science/journal/22106502/27/supp/C

