
International Journal of Computer Applications (0975 – 8887) 
Volume 179 – No.4, December 2017 

 

1 

Online Identification and Control of an Electric Oven 
using Self-Tuning Regulator  

Thanh Huyen Bui 
Faculty of Electrical and Electronics Engineering

 

HCMC University of Technology 
Ho Chi Minh City, Vietnam 

 

ABSTRACT 
The paper presents the process of the design of self-tuning 

regulator (STR) using pole assignment method in controlling 

electric oven. First, data of the oven including supplied power 

and temperature is acquired in order to find the model 

structure of the oven. On the basic of the obtained model, the 

parameters of the oven will be online identified. Afterward, 

these parameters will be used to design controller using pole 

assignment method. Thus, when the parameters of the oven 

change, the control parameters will change correspondingly so 

that the final performance is as desired. MATLAB, Simulink 

Real-Time Workshop are used to implement the controller in 

real time. 
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1. INTRODUCTION 
The majority of processes met in industrial practice have 

stochastic character, viz. the output at time 𝑡 cannot be exactly 

determined from I/O data at time 𝑡 − 1. Traditional 

controllers with fixed parameters are often unsuited to such 

processes because their parameters change. Parameter changes 

are caused by changes in the manufacturing process, in the 

nature of the input materials, fuel, machinery use (wear) etc. 

Fixed controllers cannot deal with this. One possible 

alternative for improving the quality of control for such 

processes is the use of adaptive control systems [1]. 

In an adaptive system, it is assumed that the regulator 

parameters are adjusted all the time. This implies that the 

regulator parameters follow changes in the process. However, 

it is difficult to analyze the convergence and stability 

properties of such system. To simplify this problem, it can be 

assumed that the process has constant but unknown 

parameters. When the process is known, the design procedure 

specifies a set of desired controller parameters. The adaptive 

controller should converge to these parameter values even 

when the process is unknown. A regulator with this property 

is called self-tuning, since it automatically tunes the controller 

to the desired performance. The self-tuning regulator (STR) is 

based on the idea of separating the estimation of unknown 

parameters from the design of the controller. [2]. The basic 

idea is illustrated in Fig.1. 

The unknown parameters are estimated on-line, using a 

recursive estimation method. The estimated parameters are 

treated as if they are true; i.e. the uncertainties of the estimates 

are not considered. This is called certainty equivalence 

principle. Many different estimation schemes can be used, 

such as stochastic approximation, least squares, extended and 

generalized least squares, instrumental variable, and 

maximum likelihood. The design method is chosen depending 

on the specifications of the closed loop system. [2]. 
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Fig. 1. Block Diagram of Self-Tuning Regulator 

In this paper, methods to identify and design controller to 

regulate temperature of oven will be presented. 

The rest of this paper is organized as follows: section 2 

introduces online parameter identification, while section 3 

describes design of self-tuning regulator. Section 4 presents 

methods to identify offline model of oven. Section 5 presents 

results implemented on real oven and the final section is 

conclusions. 

2. ONLINE PARAMETER ESTIMATION 

2.1 Introduction 
In many applications, plant (model) structure may be known, 

but its parameters may be unknown and time-varying due to 

changes in operation conditions, aging of equipment, etc. 

Thus, the offline parameter estimation is inefficient. 

Online estimation schemes refer to those estimation schemes 

that provide frequent estimates of plant parameters by 

properly processing the plant I/O data online. The essential 

idea behind is the comparison of the observed system 

response 𝑦 𝑘  with the output of a parameterized 

model 𝑦  𝜃, 𝑘 , whose structure is the same as that of plant 

model. Then, 𝜃 𝑘  is adjusted continuously so that 𝑦  𝜃, 𝑘  

approaches to 𝑦 𝑘  when 𝑘 increases.(Under certain input 

conditions, 𝑦  is close to 𝑦 implies that 𝜃 𝑘  is close to the 

unknown 𝜃∗). 

The online estimations procedure, therefore, involves three 

following steps: 

 Select an appropriate plant parameterization. 

 Select an adaptive law for generating or updating 𝜃 𝑘 . 

 Design the plant input so that 𝜃 𝑘  approaches to 𝜃∗ when 

𝑘 → ∞. 

Remark: In adaptive control, where the convergence of  𝜃 𝑘  

to 𝜃∗ is usually not one of the objectives, the first two steps 

are the most important ones. 
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2.2 Model Structures 
When systems cannot be modeled with use of physical 

principles. The reason for this may be lack of information 

about the systems function. Another case would be when the 

physical relationships are too complex to unreal. The remedy 

for this is to use standard models, which by experience, are 

able to handle many cases in dynamic systems. The most 

common class of such standard models is linear system. 

A general time discrete model parameterized by 𝜃 can be 

written as follows: 

𝑦 𝑘 = 𝐺 𝑞−1, 𝜃 𝑢 𝑘 + 𝐻 𝑞−1, 𝜃 𝑒 𝑘                                  1  

Where:  

𝑞−1  : back shift differential operator 

𝑞−1𝑦 𝑘 = 𝑦 𝑘 − 1  

𝐺 𝑞−1, 𝜃  : system model 

𝐻 𝑞−1, 𝜃  : noise model 

𝑒 𝑘  : white noise. 

In black-box modeling with prediction error methods, the 

following general model structure is often used: 

𝐴 𝑞−1 𝑦 𝑘 =
𝐵 𝑞−1 

𝐹 𝑞−1 
𝑢 𝑘 +

𝐶 𝑞−1 

𝐷 𝑞−1 
𝑒 𝑘                            2  

Where: 

𝐴 𝑞−1 = 1 + 𝑎1𝑞
−1 + 𝑎2𝑞

−2 + ⋯ + 𝑎𝑛𝑎𝑞−𝑛𝑎  

and similar for the 𝐶, 𝐷 and 𝐹 polynomials, while 

𝐵 𝑞−1 = 𝑏1𝑞
−1 + 𝑏2𝑞

−2 + ⋯ + 𝑏𝑛𝑏𝑞
−𝑛𝑏  

Table 1 shows common model structures that are special 

cases of (2) [3]. 

Table.  1. Common model structures 

Polynomial 

used 
Name of the model structure 

𝐵 FIR (Finite Impulse Response) 

𝐴, 𝐵 ARX 

𝐴, 𝐵, 𝐶 ARMAX 

𝐵, 𝐹 OE(Output Error) 

𝐵, 𝐶, 𝐷, 𝐹 BJ(Box-Jenkins) 

3. SELF-TUNING REGULATOR 

3.1 Recursive Extended Least Squares 

(RELS(PR)) (A Prior Prediction Errors) 
The least-square method is commonly used in system 

identification. Its principle is that the unknown parameters of 

a mathematical model should be chosen by minimizing the 

sum of the square of the difference between the actually 

observed and the analytically predicted output values with 

possible weighting that measure the degree of precision. The 

least-squares criterion is quadratic, so an analytic solution to 

the least-squares problem exists as long as the measured 

variable is linear in the unknown parameters. 

It is assumed that the process is described by the single-input, 

single output (SISO) system: 

𝐴 𝑞−1 𝑦 𝑘 = 𝑞−𝑑𝐵 𝑞−1 𝑢 𝑘 + 𝐶 𝑞−1 𝑒 𝑘                      3  

Where:  
  𝐴 𝑞−1 = 1 + 𝑎1𝑞

−1 + 𝑎2𝑞
−2 + ⋯ + 𝑎𝑛𝑎𝑞−𝑛𝑎  

𝐵 𝑞−1 = 𝑏1𝑞
−1 + 𝑏2𝑞

−2 + ⋯ + 𝑏𝑛𝑏𝑞
−𝑛𝑏  

  𝐶 𝑞−1 = 1 + 𝑐1𝑞
−1 + 𝑐2𝑞

−2 + ⋯ + 𝑐𝑛𝑐𝑞
−𝑛𝑐  

with 𝑛𝑎 , 𝑛𝑏 , 𝑛𝑐  are the order of the polynomials 

𝐴, 𝐵 , 𝐶 respectively and 𝑑 is time delay. 

This is an ARMAX model. 

The model is linear in the parameters and can be written in the 

vector form as follows: 

𝑦 𝑘 = 𝜃𝑘−1
𝑇 Φ𝑘−1

𝑒 + 𝑒 𝑘                                                             4  

Where: 

𝜃𝑘−1 =  𝑎 1, 𝑎 2, … , 𝑎 𝑛𝑎 , 𝑏 1, 𝑏 2, … , 𝑏 𝑛𝑏 , 𝑐 1, 𝑐 1, … , 𝑐 𝑛𝑐   

Φ𝑘−1
𝑒 =  −𝑦𝑘−1, −𝑦𝑘−2, … , −𝑦𝑘−𝑛𝑎 , 𝑢𝑘−𝑑−1, 𝑢𝑘−𝑑−2, … ,

𝑢𝑘−𝑑−𝑛𝑏 , 𝑒𝑘−1, 𝑒𝑘−2, … , 𝑒𝑘−𝑛𝑐 ,  
𝑇  

with 

𝜃𝑘−1: estimation parameter vector. 

Φ𝑘−1
𝑒  : regression vector. 

If Φ𝑘−1
𝑒  were available, the RLS (Recursive Least Squares) 

algorithm could be used to recursively estimate  𝜃. In reality, 

all elements of Φ𝑘−1
𝑒  is known except for its last 

𝑛𝑐  components. In RELS(PR), such components are replaced 

by using the prior prediction errors. 

𝜀𝑘 = 𝑦𝑘 − 𝜃𝑘−1
𝑇 Φ𝑘−1                                                                     5  

where Φ𝑘−1 is given here by the pseudo-regressor: 

Φ𝑘−1 =  −𝑦𝑘−1, −𝑦𝑘−2, … , −𝑦𝑘−𝑛𝑎 , 𝑢𝑘−𝑑−1, 𝑢𝑘−𝑑−2, … ,
𝑢𝑘−𝑑−𝑛𝑏 , 𝜀𝑘−1, 𝜀𝑘−2, … , 𝜀𝑘−𝑛𝑐 ,  

𝑇  

The algorithm to identify 𝜃 is given in formulas 6 and 7. 

𝜃𝑘 = 𝜃𝑘−1 +
𝐶𝑘−1Φ𝑘−1

𝜑 + Φ𝑘−1
𝑇 𝐶𝑘−1Φ𝑘−1

 𝑦𝑘 − 𝜃𝑘−1
𝑇 Φ𝑘−1            6  

𝐶𝑘 =
1

𝜑
 𝐶𝑘−1 −

𝐶𝑘−1Φ𝑘−1Φ𝑘−1
𝑇 𝐶𝑘−1

𝜑 + Φ𝑘−1
𝑇 𝐶𝑘−1Φ𝑘−1

                                      7  

𝜃 is identified by minimizing the quadratic index  

𝐽𝑘 =
1

2
 𝜑𝑘−𝑖 𝑦𝑖 − 𝜃𝑘

𝑇Φ𝑖−1 
2

𝑘

𝑖=1

 

The RELS algorithm above can be interpreted intuitively. The 

estimate 𝜃𝑘  is obtained by adding a weighted prediction error 

term 𝑦𝑘 − 𝜃𝑘−1
𝑇 Φ𝑘−1 to the previous estimate 𝜃𝑘 . The term 

𝜃𝑘−1
𝑇 Φ𝑘−1 can be viewed as the value of 𝑦 at time 𝑘 predicted 

by the model (4) with the previous estimates 𝜃𝑘−1. The 

parameter 𝜑 is called the forgetting factor and is usually 

chosen in range 0.95 < 𝜑 < 1 . The choice of 𝜑 depends on 

how the properties of the system change. Smaller values of 𝜑 

result in a faster forgetting, which can be used to cope with 

nonlinear and fast changing systems. Likewise values of 𝜑 

close to 1 result in slower forgetting, and can be used for 

systems that change gradually.  
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The symmetric covariance matrix 𝐶𝑘  is defined by 𝐶𝑘 =

  Φ𝑖−1Φ𝑖−1
𝑇𝑘

𝑖=1  
−1

 with the initial condition 𝐶0 positive 

definite. By this definition, it is easy to see that 𝐶𝑘 ≈

  𝐶0
−1 +  Φ𝑖−1Φ𝑖−1

𝑇𝑘
𝑖=1  

−1
. Notice that 𝐶𝑘  can be made 

arbitrarily close to   Φ𝑖−1Φ𝑖−1
𝑇𝑘

𝑖=1  
−1

 by choosing 𝐶0 

sufficiently large [2]. 

3.2 Two-degree-of-freedom controller 

w(k) u(k) y(k) 1 

   P  

   B   

   A   

Q

R

 

Fig. 2. Two-degree-of-freedom controller 

The process model is described as in (3): 

𝐴 𝑞−1 𝑦 𝑘 = 𝑞−𝑑𝐵 𝑞−1 𝑢 𝑘 + 𝐶 𝑞−1 𝑒 𝑘  

Assume that the polynomials 𝐴 𝑞−1  and 𝐵 𝑞−1  are co-

prime, i.e. they do not have any common factors. 

Furthermore, 𝐴 𝑞−1  is monic. That is, the coefficient of the 

highest power is unity. 

A general linear controller can be described by: 

𝑃 𝑞−1 𝑢 𝑘 = 𝑅 𝑞−1 𝑤 𝑘 − 𝑄 𝑞−1 𝑦 𝑘                            8  

Where: 

𝑃 𝑞−1 = 𝑝0 + 𝑝1𝑞
−1 + 𝑝2𝑞

−2 + ⋯ + 𝑝𝑛𝑝𝑞−𝑛𝑝  

𝑄 𝑞−1 = 𝑝0 + 𝑞1𝑞
−1 + 𝑞2𝑞

−2 + ⋯ + 𝑞𝑛𝑞𝑞
−𝑛𝑞  

   𝑅 𝑞−1 = 𝑟0 + 𝑟1𝑞
−1 + 𝑟2𝑞

−2 + ⋯ + 𝑟𝑛𝑟𝑞
−𝑛𝑟  

𝑛𝑝 , 𝑛𝑞 , 𝑛𝑟  are the order of the polynomials 𝑃, 𝑄, 𝑅 

respectively. 

This controller consists of a feedforward with the transfer 

operator  
𝑅 𝑞−1 

𝑃 𝑞−1 
  and a  feedback with the transfer operator 

𝑄 𝑞−1 

𝑃 𝑞−1 
 . It thus has two degrees of freedom. A block diagram 

of the closed-loop system is illustrated in the Fig.2. 

Eliminating 𝑢 𝑘 , the following equations can be obtained for 

the closed loop system. 

𝑦 𝑘 =
𝐵𝑅

𝐴𝑃 + 𝐵𝑄
𝑤 𝑘 +

𝐶𝑃

𝐴𝑃 + 𝐵𝑄
𝑒 𝑘                                  9  

Thus, the closed loop characteristic polynomial is: 

𝐴𝑐 = 𝐴𝑃 + 𝐵𝑄                                                                             10   

This equation is known as the Diophantine equation or the 

Bézout's identity and it plays a central role in many aspects of 

modern control theory. 

The desired closed loop response is: 

𝑦𝑚 𝑘 =
𝐵𝑚

𝐴𝑚
𝑤 𝑘                                                                        11  

Then, (assumed 𝑒 𝑘 = 0): 

𝐵𝑅

𝐴𝑃 + 𝐵𝑄
=

𝐵𝑚

𝐴𝑚
 

Generally, 𝑑𝑒𝑔 𝐴𝑃 + 𝐵𝑄 > 𝑑𝑒𝑔 𝐴𝑚 . It means that 𝐵𝑅 and 

𝐴𝑃 + 𝐵𝑄 have a common factor 𝐴0. As it is desirable to 

cancel only stable, thus decompose 𝐵 as 𝐵 = 𝐵+𝐵−. 

Where:  
𝐵+: contains stable zeros that can be cancelled 

𝐵−: contains unstable zeros that should not be cancelled 

Then, 

𝐵𝑅

𝐴𝑃 + 𝐵𝑄
=

𝐵𝑚

𝐴𝑚
⟺

𝐵+𝐵−𝑅

𝐴𝑃 + 𝐵+𝐵−𝑄
=

𝐴0𝐵𝑚

𝐴0𝐴𝑚
 

 

It follows that 𝑃 = 𝑃1𝐵
+. Thus, 

𝐴𝑃1 + 𝐵−𝑄 = 𝐴0𝐴𝑚                                                                    12  

Causality of the controller imposes: 

𝑑𝑒𝑔 𝑄 ≤ 𝑑𝑒𝑔 𝑃 , 𝑑𝑒𝑔 𝑅 ≤ 𝑑𝑒𝑔 𝑃  

𝑑𝑒𝑔 𝐴𝑚  − 𝑑𝑒𝑔 𝐵𝑚 ≥ 𝑑𝑒𝑔 𝐴 − 𝑑𝑒𝑔 𝐵  

𝑑𝑒𝑔 𝐴0 ≥ 2𝑑𝑒𝑔 𝐴 − 𝑑𝑒𝑔 𝐵+ − 𝑑𝑒𝑔 𝐴𝑚 − 1 

To simplify, here only represent pole placement design with 

no zeros cancelled algorithm. 

3.3 Algorithm 
Data: Polynomials 𝐴 and 𝐵. 

Specifications: Polynomials 𝐴𝑚 , 𝐵𝑚 , and 𝐴0. 

Compatibility conditions: 

𝐵  𝑑𝑖𝑣𝑖𝑑𝑒𝑠  𝐵𝑚  

𝑑𝑒𝑔 𝐴𝑚  − 𝑑𝑒𝑔 𝐵𝑚 ≥ 𝑑𝑒𝑔 𝐴 − 𝑑𝑒𝑔 𝐵  

𝑑𝑒𝑔 𝐴0 ≥ 2𝑑𝑒𝑔 𝐴 − 𝑑𝑒𝑔 𝐴𝑚  − 1 

Step 1. Solve 𝑨𝑷 + 𝑩𝑸 = 𝑨𝟎𝑨𝒎   

Step 2. Form 𝑅 =
𝐵𝑚

𝐵
𝐴0  

Step 3. The control law is  

𝑷 𝒒−𝟏 𝒖 𝒌 = 𝑹 𝒒−𝟏 𝒘 𝒌 − 𝑸 𝒒−𝟏 𝒚 𝒌  

     

4. OFFLINE IDENTIFICATION 

4.1 Data collection 
The purpose of the off-line identification is to find a model 

structure of the oven. Two data sets are collected from the 

system, model and validation data. The model data is used for 

model estimation. The validation data is only used for 

comparison with predicted data from an estimated model. The 

model and validation data are collected in the open-loop 

system. To be able to determine an accurate model of a 

system, it is necessary to excite as much information as 

possible from the process. The solution is to use an input 

signal with a vast frequency content. In the work to be 

presented here, a chirp signal, a sine wave with increasing 

frequency, is used as input signal. 

Using a chirp signal with frequencies between 0 and 0.2 Hz 

and amplitude 5 V to collect model data. Besides, another 

chirp signal with frequencies between 0 and 0.01 Hz and 

amplitude 5 V to collect validation data. See the plots below. 
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Fig. 3. Model Data 

 

Fig. 4. Validation Data 

4.2 System Identification 
The System Identification Toolbox for MATLAB is used to 

find the model structure of the oven. ARMAX model is used 

in this section. The experimental results argue that ARMAX 

model amx3131 give the best result, i.e. model has 3 poles 

and 2 zeros. The fit or the multiple correlation coefficient is 

defined as: 

𝑓𝑖𝑡% =  1 −
  𝑦 𝑘 − 𝑦  𝑘  

2

 𝑦2 𝑘 
 ∗ 100                                13  

where 𝑦 𝑘  is the measured value and 𝑦  𝑘  is the predicted 

value. 

Using data in the Fig.4 as validation data gives 𝑓𝑖𝑡 =
81.67% and Fig.5 compares validation data and prediction 

data. 

 

Fig. 5. Model Prediction. Notation: validation data 

(dotted), predicted data (solid) 

5. IMPLEMENTED RESULTS 
Set reference temperature be 800𝐶, obtained result as Fig.6. 

Here, reference temperature is added a PRBS (Pseudo 

Random Binary Signal) having amplitude ±0.15 and 

frequency 0.05𝑟𝑎𝑑/𝑠 to increase information in input. 

Besides the other parameters are chosen as: 𝑇0 = 1𝑠, 𝜑 =
1, 𝜔 = 0.02𝑟𝑎𝑑/𝑠 , 𝜉 = 0.85, 𝐴0 = 1. 

 

Fig. 6. Implemented result in the real time 

The estimated parameters of the oven are given in Table 2 and 

Fig.7, Fig.8. 

Table.  2. Values of parameters 

Parameters Predicted Values Estimated Values 

𝑎1 −2.9442 −2.9434 

𝑎2 2.8899 2.8967 

𝑎3 −0.9457 −0.9533 

𝑏1 3.8467𝑒 − 4 4.2184𝑒 − 5 

𝑏2 0 4.9162𝑒 − 4 

𝑏3 0 −1.2942𝑒 − 4 
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Fig. 7. Estimated parameters of a 

 

Fig. 8. Estimated parameters of b 

Remarks: 

 Estimated values approximate predicted values and 

converge fast. 

 Performance of controlled process is good, non-

overshoot, fast steady state and small steady state error. 

6. CONCLUSION 
In this paper, the model structure of the oven plant is 

identified using offline acquired data. On the basic of the 

obtained model, the parameters of the oven will be online 

identified. Then, these parameters will be used to design 

controller using pole assignment method. Results are 

implemented on oven in real time have demonstrated that 

estimated parameters approximate predicted ones, 

performance of controlled process is good. The future work is 

to validate the effects of forgetting factor on online 

identification process as well as control performance. Besides, 

this method is also used to identify and control nonlinear 

objects. 
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