
International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.5, December 2017

6

Course Advisory and Results Expert System (CARES):

An Implementation of FMI Course Auto-Scheduling

Algorithm

Fale Mantim Innocent
Lecturer in FCE Pankshin,

Computer Science Department,
Pankshin, Nigeria

Abdulsalam Ya’u Gital
Lecturer in ATBU Bauchi,

Computer Science Department,
Bauchi, Nigeria

Iliya Nengak Sitlong
Lecturer in FCE Pankshin,

Computer Science Department,
Pankshin, Nigeria

ABSTRACT
Course advisement and results computation are tedious, time-

consuming and exhaustive jobs; yet they are necessary as

students’ performance/success is partly due to them. These jobs

engulf cumbersome tasks ranging from course scheduling to

guidance and counseling, and then the computation of Grade

Point Average (GPA) for students. Improper and untimely

advising or computation of results may hinder a student from

timely graduation. This paper proposes the FMI course auto-

scheduling algorithm which was implemented in an application

called “Nixz” – a Course Advisory and Results Expert System

(CARES). The inference engine of Nixz, which was

programmed using Python, is a hybrid of Rule-Based

Reasoning (RBR) and Case-Based Reasoning (CBR). Nixz was

built to house both prescriptive and developmental advising

models. Nixz reasons through forward chaining. The other

programmable components of Nixz were built in C#.NET using

Microsoft Visual Studio 2017. The knowledge base of Nixz was

built using Microsoft SQL Server 2012.

General Terms

 Computer Science, Expert Systems

Keywords

Academic Advising, Course Advisor, Expert System,

Knowledge-Based System

1. INTRODUCTION
There is a limit to the performance of humans on any kind of

job. But every employer wants to employ speed, accuracy and

creativity. Humans wear-off easily – especially when they tend

to do the same thing repeatedly. Course Scheduling and Results

Computation are tasks that can wear-off any Human Course

Advisor (HCA). As they wear-off, their speed, accuracy and

creativity deteriorates. On the other hand, a Course Advisory

and Results Expert System (CARES) is able to do this and more

without losing speed, accuracy and creativity – leaving the

HCAs with the other aspects of their job. This bias might

explain the uprising of expert systems. Course Scheduling is the

guidance of students on course registration while results

computation entails calculating students’ Grade Point Average

(GPA), Cumulative Grade Point Average (CGPA), and grading

of students based on their performances.

Expert Systems are programs that emulate or outdo the behavior

of human specialists, usually restrained to a particular

profession [1]. Expert Systems are domain-specific, but Course

Advisement can be global – provided the institutional-based

policies are standardized. Nixz, a proposed CARES, is a perfect

example of such Expert Systems. Nixz’s knowledge base – as

proposed – is a combination of Rule-Based Reasoning (RBR)

and Case-Based Reasoning (CBR). An RBR because it will use

IF~THEN rules for fresh scenarios after which it will store the

scenario and its outcome as new knowledge. A CBR because

once it recognizes a similar or same scenario, it will present a

similar or same outcome – as the case may be – for such a

scenario. This is common with human experts. For example, a

Court Judge follows some set of premises before drawing up a

verdict on a case. But once a case is similar or same with an

already treated one, he presents the verdict of the treated case as

a verdict for the new one. This is not only applicable to Court

Judges but human experts and non-experts in general.

The prescriptive and developmental models of academic

advising are also proposed to be joint-attributes of Nixz. Nixz,

using a developmental model of academic advising, will have a

module which allows each advisee to perform a ‘pilot-

registration’ before meeting his/her course advisor for

confirmation and other form of advisement. On the other hand,

Nixz, using a prescriptive model of academic advising, will

have a module which allows the course advisor to

schedule/register courses for the advisee – with the consent of

the advisee.

CARES is of great importance for diverse reasons; multi-

objective CARES is not common in institutions – including

Federal College of Education, Pankshin (FCEP), Nigeria; the

success of this research will aid HCAs and it will also add

dynamism / new knowledge to CARES research – considering

the approach used in this research (which is pretty different

from the ones that shall be reviewed in section 2).

Section 2 of this paper discusses ‘related work’ while section 3

discusses ‘course scheduling: a brief overview’. In section 4,

‘the nixz architecture’ is discussed. Section 5 presents ‘case

study’ while section 6 covers ‘implementation’. Section 7 looks

at the ‘evaluation’ of nixz and section 8 handles ‘discussion of

results’. Section 9 is ‘conclusion’. Section 10 covers

‘references’.

2. RELATED WORK
Can there ever be a ‘global’ expert student advising system that

applies to all academic institutions and departments? The

variations in academic regulations and policies specific to each

academic unit makes this seem unlikely. CARES research has

gained great momentum, despite the fact that it has lingered for

a while. This quest is partly due to the irregularities in

institution-based academic advising and results computation

policies. This is believed to have made it impossible for

different institutions to use the same CARES – they would

rather be built to serve an institution’s purpose. Worthy of note

is the fact that approach and perspective are constraints to any

research. A handful of concerted efforts channeled towards this

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.5, December 2017

7

research are reported in this paper. The advising models,

knowledge base and inference engine will be the only

components to be reviewed.

In [2], ‘A Prototype Student Advising Expert System Supported

with an Object-Oriented Database’, an expert system called ‘IS-

Advisor’ was discussed. This system uses the prescriptive and

developmental advising models. Its knowledge base is RBR.

The inference engine of ‘IS-Advisor’ was not discussed in [2].

‘Implementation of an Intelligent Course Advisory Expert

System’ as discussed in [3] is a Case-Based Course Advisory

Expert System. The system’s knowledge base – as reported – is

a hybrid of RBR and CBR. The advising model(s) and inference

engine used was not discussed in [3].

‘Case Study: A Course Advisor Expert System’ was discussed

in [4]. The advising model(s), knowledge base(s) and inference

engine(s) used in the implementation of this expert system was

not emphatically specified. However, [4] insinuates that the

expert system’s knowledge base is a combination of RBR and

CBR.

‘An Expert System for Advising Postgraduate Students’ was

discussed in [5]. The advising model(s) of Postgraduate Advisor

Expert System (PAS) was not specified in [5]. PAS’

knowledge base is an RBR and its inference engine undefined.

‘The Graduate Student Advisor (GSA): An Expert System for

SAN Graduate Student Advising’ as discussed in [6]

suggestedly uses a developmental advising model. GSA’s

knowledge base is an RBR. GSA’s inference engine is

undefined but its alogrithms suggest that it perceives knowledge

through forward chaining.

‘The Graduate Course Advisor: A Multi-Phased Rule-Based

Expert System’ as discussed in [7] suggestedly uses a

developmental advising model. GCA’s knowledge base is an

RBR. GCA’s inference engine reasons through forward

chaining. The advising task of GCA is divided into four phases,

each of which may apply the inference engine to its own rule-

base and invoke other procedures. The GCA was modelled after

MYCIN.

‘PACE: a planning advisor on curriculum and enrolment’ was

discussed in [8]. PACE uses the prescriptive advising model. Its

knowlegde base is an RBR. It reasons through forward

chaining.

‘Educational Advisor System Implemented by Web-Based

Fuzzy Expert Systems’ was discussed in [9]. This system uses

the prescriptive advising model. Its knowledge base is an RBR.

Its inference engine reasons through forward chaining.

‘Nixz: A Course Advisory and Results Expert System’ differs

from a handful of course advisory and results expert systems

because it jointly uses an RBR and a CBR. It also implements

both the prescriptive and developmental advising models.

 Nixz’s knowledge grows as its usage increases. The rules in its

RBR can be modified or perhaps, changed with little or no

effort – making it cheap to maintain. Nixz’s inference engine –

though reasons through forward chaining – is designed to work

under the most stringent conditions. The Nixz architecture shall

be discussed in section 4.

3. COURSE SCHEDULING: A BRIEF

OVERVIEW
Going by either the prescriptive or developmental model of

advising, the first ever registration of students capture their

personal or bio data, departmental information and admission

requirements. These give a course advisor a glimpse about a

student. Subsequent registration(s) follow the below procedure:

i. Check if student’s tuition and other fees have been

paid.

ii. Check student’s previous performance to determine

whether or not he/she is qualified to register for the

current session/level.

iii. Determine courses to be registered.

iv. Maximum and minimum credit limits should be

checked before registering a course.

v. Failed or carryover courses are registered first.

vi. When a prerequisite course is failed, no dependant

courses can be registered.

vii. Multiple registrations of courses are not allowed.

viii. Course advisors or students are only allowed to freely

add/drop elective courses.

Registration procedures are usually made available to students

at every registration period. These procedures/guidelines are

usually pasted on notice boards, uploaded to students’ portal

and/or included in students’ handbook as the case may be. This

is to ensure a healthy registration process and also to establish a

level of understanding between the course advisor and the

student. Nixz’s Rule-Based (RB) and Case-Based (CB) course

scheduling algorithms shall be discussed in section 6.

4. THE NIXZ ACHITECTURE
As shown in Fig.1, Nixz is based on a 3-tier architecture

consisting of a client, application and data tiers. The client tier

enables course advisors and students to request for course

scheduling recommendations using a web browser via client

devices like PCs, mobile and smart phones, and personal digital

assistants (PDAs). There are graphical user interfaces (GUIs)

available on this tier for interactions between users and Nixz.

Fig.1: A 3-tier Architecture of Nixz

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.5, December 2017

8

The application tier consists of a web server, inference engine

and ActiveX Data Object (ADO).NET. The web server handles

the processing of requests from the client tier. It mediates

between the client tier and the data tier. It coordinates the

activities of the inference engine and ADO.NET. It also handles

computations of results after which it stores it in the database –

this later serves as knowledge to the inference engine. The

inference engine is the mechanism for decision making. It

interacts with the knowledge base and database via ADO.NET

and provides course advisors and students with the best course

scheduling recommendations. Just as presented in the flowchart

in Fig.2, the inference engine accepts new cases, attempts to

match them with already treated cases in the case-base. If

similar cases are found, the inference engine adopts their

solutions for the new cases; otherwise it relies on the rule-base

for solutions for the new cases – after which it stores the new

cases-solutions pairs in the case-base. ADO.NET is responsible

for storing and retrieving information from both database and

knowledge base of the data tier.

The data tier comprises of the database and the knowledge base.

The database consists of institution-based programs, faculties,

departments, courses, students’ results, and etcetera. The

knowledge base is constituted by a rule-base and a case-base.

Fig.2: Flowchart of the Inference Engine recommendation

on course scheduling

The case-matching mechanism of the inference engine is based

on fuzzy logic. The flowchart, as shown in Fig. 2, best describes

how the inference engine matches a new case with old ones in

order to develop a solution for such a case. The inference

engine accepts new case. Attempts to match new case with

existing ones. If similar case(s) is/are found, it retrieves and

adopts the best possible solution else, it adopts a rule-based

solution.

The case-matching mechanism of the inference engine seeks for

similarities between a new case and old cases. These

similarities are ranked from 0.0 to 1.0. These values are

calculated by the formula:

Where: Ω=similarity; nc=new case; oc=old case;

α[nc,oc]=number of courses that match nc and oc; and

β[nc,oc]=number of courses that do not match nc and oc.

Once the similarities between the new case and the old case are

calculated, the solution to the one that is closest to 1.0 is

adopted as the solution to the new case. A similarity that equals

0.0 means that there are no intersections between the new case

and the old case used in the calculation. While a similarity of

1.0 means that there are intersections (but no differences)

between the new case and the old case used in the calculation.

Any similarity that falls between 0.0 and 1.0 imply that there

are both intersections and differences between the new case and

the old case used in the calculation.

5. CASE STUDY
Federal College of Education, Pankshin (FCEP) is a tertiary

institution located in Plateau State, Nigeria. FCEP has seven

faculties/schools and thirty three departments. FCEP has more

than ten thousand students. FCEP runs a list of programs

including fulltime and part-time degrees (in affiliation with

University of Jos, Nigeria), fulltime Nigeria Certificate in

Education (NCE), and part-time NCE. Nigerian institutions run

one or more of the aforementioned programs as necessitated.

Except for a few institution-based policies guiding course

registration, the course registration process is standardized in

Nigeria. Standards bodies like the National Universities

Commission (NUC), National Commission for Colleges of

Education (NCCE), etcetera have guidelines for course

registration in institutions and conducts as such. But

nonetheless, the FCEP course registration procedure has formed

the basis for Nixz’s course scheduling algorithm which shall be

discussed in section 6.

6. IMPLEMENTATION

Table 1: FMI Course Auto-Scheduling Algorithm

Algorithm AUTOCOURSESCHEDULING(StudentID,C,F,R,E)

INPUT: vector C of registration presets from current level downwards for student, vector F of failed courses for student, vector

R of overall distinct registered courses for student, vector E of permissible elective courses for student

OUTPUT: vector X of recommended courses for the current registration

if voluntaryWithdrawal(StudentID)==false && withdrawn(StudentID)==false then

<*remove overall distinct registered courses from vector C of registration presets for student*>

for each r in R

remove r from C

rof;

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.5, December 2017

9

<*register failed courses for student*>

for each f in F

if (creditRegistered+creditOf(f))<= maxCreditAllowed then

add f to X

creditRegistered:=creditRegistered+creditOf(f)

fi;

rof;

<*register courses from vector C of registration presets for student*>

for each c in C

if (creditRegistered+creditOf(c))<=maxCreditAllowed then

if courseAlreadyAdded(c)==false && coursePrerequisiteFailed(c)==false then

add c to X

creditRegistered:=creditRegistered+creditOf(c)

fi;

fi;

rof;

<*register courses from vector E of permissible elective courses for student*>

for each e in E

if creditRegistered+creditOf(e))<=maxCreditAllowed then

if courseAlreadyAdded(e)==false && coursePrerequisiteFailed(e)==false then

add e to X

creditRegistered:=creditRegistered+creditOf(e)

fi;

fi;

rof;

return X;

fi;

end;

Nixz’s course scheduling algorithm as shown in Table 1

generates a list of prescribed core courses from current level

down to the previous level(s) for respective students and stores

in vector C. Nixz then generates overall distinct registered

courses for such students and stores it in vector R. All the

courses in vector R are now removed from vector C – leaving

only courses that have never been registered for these students.

Now, considering the allowable number of credits to register,

Nixz generates a list of failed courses (vector F) for each

student and adds to vector X of recommended courses. Nixz

then attempts to add vector C to vector X. If the credits limit is

not reached, Nixz generates prescribed electives and allows the

respective students to add to vector X

Table 2 shows the results computation algorithm of Nixz. Nixz

totals the overall credits registered, finds the overall sum of the

product of credit by grade point of each course for each student,

and then performs a division of this sum by credits registered to

give the Cumulative Grade Point Average (CGPA).

Table 2: Nixz’s Result Computation Algorithm

Algorithm COMPUTERESULT(StudentID,C)

INPUT: vector C of registered courses for current level downwards for student

OUTPUT: Cumulative Grade Point Average CGPA

<*compute CGPA*>

CGPA:=0.00

for each c in C

creditRegistered:=creditRegistered+creditOf(c)

totalGradePoint:=totalGradePoint+creditOf(c)*gradePointOf(c)

if creditRegistered <> 0 then

CGPA:=totalGradePoint/creditRegistered

fi;

rof;

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.5, December 2017

10

if CGPA < 1.00 then

probate(StudentID)

fi;

return CGPA;

end;

Fig.3 and Fig.5 show how course scheduling is done by Nixz.

Nixz requires that the user inputs an academic session and

level, after which it generates a list of prescribed courses to be

registered. Fig.4 shows a sample of results computed for

students. This result captures Cumulative Total Credits

Registered (CTCR), Cumulative Total Credits Earned

(CTCE), Cumulative Total Grade Point (CTGP) and

Cumulative Grade Point Average (CGPA).

Fig.3: Course Scheduling for 200L ~ 2015/2016

Fig.4: Sample Result generated by Nixz

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.5, December 2017

11

Fig.5: Sample of scheduled courses by Nixz

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.5, December 2017

12

7. EVALUATION

COURSE SCHEDULING

1 The predictions of Nixz are accurate?

 Strongly Disagree Disagree Neutral Agree Strongly Agree

2 Nixz requires less input to make predictions?

 Strongly Disagree Disagree Neutral Agree Strongly Agree

3 Nixz does not demand for irrelevant information?

 Strongly Disagree Disagree Neutral Agree Strongly Agree

RESULTS COMPUTATION

4 The results computed by Nixz are accurate?

 Strongly Disagree Disagree Neutral Agree Strongly Agree

5 Nixz requires less input to compute results?

 Strongly Disagree Disagree Neutral Agree Strongly Agree

6 Nixz probation mechanism is accurate?

 Strongly Disagree Disagree Neutral Agree Strongly Agree

7 Nixz withdraws students on the right basis – that is multiple-probation?

 Strongly Disagree Disagree Neutral Agree Strongly Agree

8 Nixz predicts that students who pay tuition but did not apply for deferment of academic sessions and did not register

their courses have voluntarily withdrawn from the institution. And also predicts that students who did not pay their

tuition have voluntarily withdrawn from the institution?

 Strongly Disagree Disagree Neutral Agree Strongly Agree

SYSTEM SECURITY

9 Nixz does not allow unauthorized access?

 Strongly Disagree Disagree Neutral Agree Strongly Agree

10 Nixz does not keep a user logged in for more than six hours?

 Strongly Disagree Disagree Neutral Agree Strongly Agree

COST EFFECTIVENESS & RELIABILITY

11 Nixz drastically cuts down course advising time?

 Strongly Disagree Disagree Neutral Agree Strongly Agree

12 Nixz knowledge grows as the system usage grows?

 Strongly Disagree Disagree Neutral Agree Strongly Agree

13 Nixz does not breakdown or hang?

 Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig.6: Questionnaire for the evaluation of Nixz

In order to ensure proper evaluation of Nixz, a beta-test was

performed by a sample of ten experts (human course advisors)

and ten non-experts (students) from FCEP. A questionnaire

(see Fig.6) was administered to both experts and non-experts

to evaluate their experience of Nixz. Each question in the

questionnaire has options based on Rensis Linkert’s scale

(Strongly Disagree=1; Disagree=2; Neutral=3; Agree=4;

Strongly Agree=5).

8. DISCUSSION OF RESULTS
The findings of Nixz’s evaluation (as described in Table 3) is

a comparison of means – with its dependent and independent

variables coded (CS=Course Scheduling; RC=Results

Computation; SS=System Security; CER=Cost Effectiveness

and Reliability; HCA=Human Course Advisors;

STD=Students).

Table 3: Results of Nixz’s Evaluation

GROUP CS RC SS CER

HCA 4.52 4.94 4.20 4.36

STD 4.33 4.50 4.40 4.26

AVERAGE OF MEANS 4.43 4.72 4.30 4.31

The result of this analysis shows the different HCA and STD

ratings of Nixz. The average rating shows that the course

scheduling mechanism’s accuracy of Nixz is rated 88.6%

while its results computation mechanism is rated at 94.4%

accuracy. Nixz is 86% secure. It is also 86.2% cost-effective

and reliable.

9. CONCLUSION
If a system can be built for FCEP – to accommodate its list of

programs, faculties/schools, departments, and the number of

students – then such a system can be extended to other

institutions with FCEP-like scenarios; Nixz is also workable

in institutions that run master’s degree, post-graduate diploma

and diploma.

Nixz is built for institutions of higher learning. There is no

fear of its workability in Nigeria. Nixz is currently used for

course scheduling and results computation at FCEP. But

despite the acceptability that this system might have earned,

there may still be room for improvement. The future scope of

this research is with regards to knowledge acquisition and

method of inference. Further research on Nixz will be a

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.5, December 2017

13

modification of its inference engine; an improvement on this

will enlarge the precincts of its prescription and

recommendation mechanisms. In order to achieve this, a

multi-phased architecture will be adopted. The rule-base

design is also a very important and interesting area of research

as its success will ensure more accurate prescriptions and

recommendations.

10. REFERENCES
[1] J. S. Robert, Intelligent Systems: Principles, Paradigms

and Pragmatics, Sudbury, Massachusetts: Jones &

Bartlett Publishers, 2009.

[2] M. A. A. Ahmar, "A Prototype Student Advising Expert

System Supported with an Object-Oriented Database,"

International Journal of Advanced Computer Science and

Applications (IJACSA), Special Issue on Artificial

Intelligence, pp. 100-105, 2011.

[3] Daramola, O. Emebo, I. Afolabi and C. Ayo,

"Implementation of an Intelligent Course Advisory

Expert System," International Journal of Advanced

Research in Artificial Intelligence (IJARAI), vol. 3, no.

5, 2014.

[4] O. Noran, "Case Study: A Course Advisor Expert

System," in AI 2003: Advances in Artificial Intelligence,

Berlin Heidelberg, Springer, 2003, pp. 1014-1026.

[5] Al-Ghamdi, S. Al-Ghuribi, A. Fadel, F. Al-Aswadi and

T. Al-Ruhaili, "An Expert System for Advising

Postgraduate Students," International Journal of

Computer Science and Information Technologies

(IJCSIT), vol. 3, no. 3, pp. 4529-4532, 2012.

[6] J. Zhang, "The Graduate Student Advisor (GSA): An

Expert System for SAN Graduate Student Advising,"

School of Engineering & Applied Science, Miami

University, Oxford, 1992.

[7] M. G. Valtorta, B. T. Smith and D. W. Loveland, "The

Graduate Course Advisor: A Multi-Phase Rule-Based

Expert System," in Proceedings of the IEEE Workshop

on Principles of Knowledge-Based Systems, 1984.

[8] H. Guandi, K.-H. Lim and W.-Y. Yeong, "PACE: a

planning advisor on curriculum and enrollment," in

Proceedings of the Twenty-Eighth Hawaii International

Conference on System Sciences, 1995.

[9] H. G. Mahdi and R. Vahid, "Educational Advisor System

Implemented by Web-Based Fuzzy Expert Systems,"

Journal of Software Engineering and Applications, pp.

500-507,2012.

IJCATM : www.ijcaonline.org

