
International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.5, December 2017

1

Embedded and Flexible Image File Version Control

System for Managing Multiple Minor Changes

Ankitkumar M. Virparia

Department of Computer
Engineering

Indus University
Ahmedabad, India

Yash Patel
Department of Computer

Engineering
Indus University

Ahmedabad, India

Satyak Patel
Department of Computer

Engineering
Indus University

Ahmedabad, India

ABSTRACT
 With the increasing use of image as a source of information,

there arises a need to efficiently process such images that

results in reduced user effort as well as the storage space. This

research project focuses on a way to implement version control

mechanism on image data. This mechanism provides a feature

where a/the user can alter any small changes in the data

without modifying the original image data. A footer is formed

which includes various information regarding the change made

by the user in the data and that footer is appended to the

original image data using compression algorithm. Similarly,

the user can fetch the modified image data using

decompression algorithm along with the original image data.

This mechanism can be used with various base file formats

such as JPG, PNG, GIF, etc. and also ensures the security of

the data.

Keywords
Image version control; DCT; Compressed image retrieval;

version control system; image; image processing; image Data

1. INTRODUCTION
An image is an artifact that depicts visual perception that has a

similar appearance to some subject, usually physical object or a

person[1]. Image can be used to provide information which can

be analyzed and processed. In many domains where there is a

need of capturing continuous images of same object or

viewport at regular interval, there the problem of storage is an

issue. In this research, a method to effectively store and

retrieve changed part of the continuous image is proposed. This

technique works based on simple fundamental of managing

versions of document[9]. The proposed version control system

works based on the base image and list of changes in the new

version. In this paper, a version control system is proposed on

image file with any extension to store the version along with

the image data which creates a portable file having multiple

versions written inside it.

2. APPLICATIONS
Single file based Embedded version control system can be used

in following domains

 To store Multiple images captured by any stationary

camera

 For storing and managing multiple images stored by

any static CCTV camera

 Managing data products generated by geostationary

satellite

 Attaching legal/device information along with image

data[6]

 To append sender or forwarder information along with

image data

 For handling partial change in large image file

 To track versions of an image

3. STRUCTURE
The image file contains various components briefly

illustrated below.[6]

Fig 1: Structure of the image file

Image Data: This field represents the bytes of data of the

original image file. It contains header and pixel information.

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.5, December 2017

2

Pixel information may be compressed depending upon the

image file format.

E.O.I.: This field is the marker representing end of the original

image data. Its size is 3 bytes. When dealing with different

image file formats, it can be a burdensome job to find the end

of the image data with different header structures. In such

cases, this field can be helpful to locate the end of image data.

The values in these 3 bytes is static: 0x45, 0x4F, 0x49.

Version: The fields denoted as Version 1, Version 2, … are the

footers attached to the original image file in order to represent

various variations made to the file. Each of the these Versions

follow a common structure described in the figure above.

Version numbers serves as an id to different variations made.

Size of Version number field is 1 byte.

Changed Width: This field indicates the new width of the

image file. It represents the original width of the image when

no additional pixels are added to the image. Size of Changed

Width is 2 bytes.

Changed Height: This field indicates the new height of the

image file. It represents the original height of the image when

no additional pixels are added to the image. Size of the

Changed Height is 2 bytes.

Footer Length: This field indicates the total size of the footer

attached. Size of this is 4 bytes. Value of this field depends on

the variable fields such as pixel indices and compressed data,

description.

Pixel Indices: This field represents the indices of the pixels

that are changed from the original image file. It occupies 4

bytes for each pixel. The overall size of this field depends on

the number of pixels that are changed. The value of this field is

the product of the pixel’s x- and y-positions.

Marker1: This field is the marker that represents the offset to

the new data. The size of this field is 2 bytes.

Compressed Data: This field represents the compressed data

of the RGB values using JPEG compression. These RGB

values corresponds to the pixel defined by pixel indices. The

size of this field depends on the number pixels changed.[2]

Marker2: This field is the marker that represents the offset to

the description field. The size of this field is 2 bytes.

Description: This is the optional field. This field describes the

message regarding to the change made to the original image, if

any.

4. WORKING

4.1 Write
This section comprises of compression of the data, footer

formation and appending the footer to the original image. The

primary steps associated with this section are as follows:

a) Selecting the old or new indices for the pixels that

are to be changed or added respectively.[12]

b) Deciding the RGB values for the above chosen

pixels.[11]

c) Applying the compression algorithm to the selected

RGB values.

d) Formation of the footer using various fields as

discussed earlier and appending the footer to the

original image data.[7]

Fig 2: Flowchart for Compression Algorithm

Compression Algorithm:

1. The new selected values are converted from RGB

into a different color space called Y’CBCR. The Y’

component represents the brightness of a pixel, and

the CB and CR components represents the

chrominance split into blue and red components.

Following equation converts the RGB values to

Y'CBCR[5] .

Y′ = 0.299R + 0.587G + 0.114B

CB = −0.169R − 0.331G + 0.5B

CR = 0.5R − 0.419G − 0.081B

2. After the color space transformation, the Y’CBCR

values are split into 8x8 blocks. If the data does not

represent an integer number of blocks then the

remaining area of the incomplete blocks are filled

with some form of dummy data.

3. Next, each 8x8 block of each component is converted

to a frequency-domain representation, using a

normalized Discrete Cosine Transform(DCT). Before

computing the DCT of the 8x8 block, its values are

shifted from a positive range to one centered on zero.

For an 8-bit image, each entry in the original block

falls in the range [0,255]. The midpoint of the range

is subtracted from each entry to produce a data range

that is centred on zero, so that the modified range is

[-128,127]. The next step is to take the two

dimensional DCT[4], which is given by:

Gu,v

=
1

4
α u α v gx,y cos

 2x + 1 uπ

16
 cos

 2y + 1 vπ

16

7

y=0

7

x=0

where,

 u is the horizontal spatial frequency, for integers, 0 ≤ u ≤ 8

 v is the vertical spatial frequency, for integers, 0 ≤ v ≤ 8.

 α u =
1

√2
, if u = 0

1, otherwise
 is a normalizing scale factor to

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.5, December 2017

3

 make the transformation orthonormal.

 gx,y is the pixel value at coordinates x, y .

 Gu,v is the DCT coefficient at coordinates u, v .

4. Next is dividing each component in 8x8 block by a

constant for that component and then rounding to the

nearest integer. This rounding operation is the only

lossy operation in the whole process if the DCT

computation is performed with sufficiently high

precision. The elements in quantization matrix

control the compression ratio, with larger values

producing greater compression. A typical

quantization matrix used is as follows:

Q =

9910310011298959272

10112012110387786449

921131048164553524

771031096856372218

6280875129221714

5669574024161314

5560582619141212

6151402416101116

The quantized DCT coefficients[1] are computed with

Bj,k = round
Gj,k

Qj,k
 for j = 0,1,2,… , 7; k = 0,1,2,… , 7

where G is the un quantized DCT coefficient; Q is the

Quantization matrix above mentioned and B is the

quantized DCT coefficients.

5. Next step is entropy coding, which involves

arranging the image components in a ‘zigzag’ order

employing run-length encoding (RLE) algorithm that

groups similar frequencies together, inserting length

coding zeros, and then using Huffman coding[8] on

what is left. In N 8x8 blocks, if the ith block is

represented by Bi and positions within each block are

represented by p, q where p = 0,1,… ,7 and

q = 0,1,… ,7 , then any coefficient in the DCT image

can be represented as Bi p, q .

Fig 3: Zigzag ordering of image components

Thus, in the above fig 4.[1], the order of encoding pixels for

the ith block is Bi 0,0 , Bi 0,1 , Bi 1,0 , Bi 2,0 , Bi 1,1 ,
Bi 0,2 , Bi 0,3 and so on. The process of encoding the zig-

zag quantized data begins with a run-length encoding where:

 x is the non-zero, quantized AC coefficient.

 RUNLENGTH is the number of zeroes that came before

this non-zero AC coefficient

 SIZE is the number of bits required to represent x.

 AMPLITUDE is the bit representation of x.

The run-length encoding works by examining each non-zero

AC coefficient x and determining how many zeroes came

before the previous AC coefficient[1]. With this information,

two symbols are created:

Table 1. Huffman encoding

Symbol 1 Symbol 2

(RUNLENGTH,

SIZE)

(AMPLITUDE)

4.2 Read
This section comprises of displaying original image according

to the header information, decompressing the footer and

displaying the modified image accordingly. The primary steps

associated with this section are as follows:

a) Reading the original image data and displaying it

according to header information.[3]

b) Fetching the footer data using E.O.I. marker.

c) Decompressing the image data and applying the

changes in the original image data accordingly along

with description, if any.

Fig 4: Flowchart for Decompression Algorithm

Decompression Algorithm:

1. The compressed data is first processed through

Huffman decoding in which the sequential data is

transformed into 8x8 blocks using the above

mentioned symbol table. These blocks are the

quantized DCT[2] coefficient matrices.

2. Next step is taking the entry-for-entry product of

these quantized DCT coefficient matrices with the

quantization matrix. This process will give the DCT

coefficient matrices.

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.5, December 2017

4

3. Now, the two dimensional inverse DCT[2] of the

resulting DCT coefficient matrices is taken which

can be given by :

fx,y =
1

4
 α u α v Fu,vcos

 2x + 1 uπ

16
 cos

 2y + 1 vπ

16

7

v=0

7

u=0

Where

 x is the pixel row, for the integers 0 ≤ x ≤ 7.

 y is the pixel column, for the integers 0 ≤ y ≤ 7.

 α u is defined as above, for the integers 0 ≤ u ≤
7.

 Fu,v is the reconstructed approximate coefficient at

coordinates u, v .
 fx,y is the reconstructed pixel value at coordinates

 x, y .

Since, rounding the output to integer values results in

an image with values still shifted down by 128, this

value is added to each entry. In general, the

decompression process may produce values outside

the original input range of [0,255]. If this occurs, the

decoder will clip the output values keeping them in

that range to prevent overflow when storing the

decompressed image with original bit depth.

4. Each of the resulting blocks of matrices represents

values in one of the color space format namely: Y’ or

CB or CR. Now these components need to be

converted to RGB format based on following

equations[5]:

R = Y′ + 1.402CR

G = Y′ − 0.344CB − 0.714CR

B = Y′ + 1.722CB

The output from the above mentioned decompression steps

gives the decompressed data which can be used to make

change in the original image pixels[10] associated with the

corresponding indices in the footer.

Fig 5: Original Image

Fig 6: Version 3 of edited image

Fig 7: Version 1 of edited image

5. CONCLUSION

In this paper, mechanism to store and retrieve partially changed

image data are discussed along with the generalized structure

of the file format which can be used with various base file

formats such as JPG, PNG, GIF, etc. The logic to read

appended versions and related information is discussed.

Moreover the file format designed is in such a way that the

modified file under version control system is still usable with

standard viewer application. Along with storing version related

data, an encryption technique is also discussed to secure the

information.

Proposed file format, encryption technique[4] and read/write

algorithms are useful in effectively managing multiple versions

of a base image file having partial changes in it. By further

developing this mechanism it can be implemented for

processing the images captured by geostationary satellite.

6. REFERENCES
[1] Jpeg n.d. In Wikipedia. Form

https://en.wikipedia.org/wiki/JPEG

[2] Guocan Feng, Jianmin Jiang, JPEG compressed image

retrieval via statistical features, Pattern Recognition,

Volume 36, Issue 4, 2003, Pages 977-985, ISSN 0031-

3203, http://dx.doi.org/10.1016/S0031-3203(02)00114-0.

[3] J. Jiang, A. Armstrong, G.C. Feng, Direct content access

and extraction from JPEG compressed images, Pattern

Recognition, Volume 35, Issue 11, 2002, Pages 2511-

2519, ISSN 0031-3203, http://dx.doi.org/10.1016/S0031-

3203(01)00217-5.

https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/JPEG

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.5, December 2017

5

[4] Krikor, Lala, et al. "Image encryption using DCT and

stream cipher." European Journal of Scientific

Research 32.1 (2009): 47-57.

[5] A. M. Sapkal, M. Munot and M. A. Joshi, "R'G'B' to

Y'CbCr color space conversion Using FPGA," 2008 IET

International Conference on Wireless, Mobile and

Multimedia Networks, Beijing, 2008, pp. 255-258.

doi: 10.1049/cp:20080191

[6] N. R. Rao and K. C. Sekharaiah, "Embedding version tag

in software file deliverables before build release," 2015

4th International Conference on Reliability, Infocom

Technologies and Optimization (ICRITO) (Trends and

Future Directions), Noida, 2015, pp. 1-6.

doi: 10.1109/ICRITO.2015.7359255

[7] J. R. da Silva Junior, T. Pacheco, E. Clua and L. Murta,

"A GPU-based Architecture for Parallel Image-aware

Version Control," 2012 16th European Conference on

Software Maintenance and Reengineering, Szeged, 2012,

pp. 191-200. doi: 10.1109/CSMR.2012.28

[8] P. G. Howard and J. S. Vitter, "Fast and efficient lossless

image compression," [Proceedings] DCC `93: Data

Compression Conference, Snowbird,UT,1993,pp.351-360.

doi: 10.1109/DCC.1993.253114

[9] B. Luo, X. Zhang and Z. Tan, "Metadata Namespace

Management of Distributed File System," 2015 14th

International Symposium on Distributed Computing and

Applications for Business Engineering and Science

(DCABES), Guiyang, 2015, pp. 21-25.

doi: 10.1109/DCABES.2015.13

[10] L. Bonanni, X. Xiao, M. Hockenberry, P. Subramani, H.

Ishii, M. Seracini, and J. Schulze, "Wetpaint: scraping

through multi-layered images," in Proceedings of the 27th

international conference on Human factors in computing

systems, ser. CHI '09. New York, NY, USA: ACM, 2009,

pp. 571-574. [Online].

[11] J. Wong and M. A. M. Capretz, "An implementation for

merging images for version control," in Proceedings of the

10th WSEAS international conference on Computers, ser.

ICCOMP'06. Stevens Point, Wisconsin, USA: World

Scientific and Engineering Academy and Society

(WSEAS), 2006, pp. 662-667. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1981848.1981971

[12] E. Shechtman and M. Irani, "Matching Local Self-

Similarities across Images and Videos," 2007 IEEE

Conference on Computer Vision and Pattern Recognition,

Minneapolis, MN, 2007, pp. 1-8.

doi: 10.1109/CVPR.2007.383198

IJCATM : www.ijcaonline.org

