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ABSTRACT 
Advancements in information technology increase the data 

volume of many domains into manyfold. Dynamic Memory 

Efficient Frequent Pattern (DMEFP) technique introduces new 

methods to represent data and redundant frequent patterns. 

Introduction of Repeat Pattern Table (RPT) and new node 

type ‘Tree Pattern Node’ (TPN) in frequent pattern tree 

softens the data mining process to be performed in a modern 

way. DMEFP technique comprises new rules to aggregate 

pattern nodes and RPT. Computational resources are used 

sagely in DMEFP technique for data mining. Reduced 

resource consumption helps to parse large amount of data in 

short time durations without much complexity. 
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1. INTRODUCTION 
Finding correlations between associated data create a valuable 

cognition. Modern databases are huge in volume and require 

complex procedures for parsing. Data mining techniques are 

designed to perform deviation detection, dependency 

modelling (association rule learning), clustering, classifying, 

regression and summarization. Association rules are used to 

relate data items in a procedural way. Deviation detection 

otherwise called as Anomaly detection is a process of 

identifying unusual records in a dataset. An anonymous record 

requires special investigation to find whether the transaction is 

occurred by mistake or a special rule has to be introduced to 

validate the record. Dependency modelling is used to define 

the relationships between the variables in the transaction 

records. Clustering is used to find and organize same or 

similar group of records under a common label. Classification 

procedure is used to identify a new record based on the 

existing known structures created by clustering. Regression is 

used to introduce a common function to correlate the data of 

same group with no or least errors. This is used to estimate the 

relationships within records or datasets. Summarization is 

used to enable data structure visualizations and to produce 

reports based on different requirements.   

2. EXISTING SYSTEMS 

2.1 Apriori 
Apriori[1] is a standard well known procedure for extracting 

association rules from binary transaction databases. Apriori 

starts with a frequent individual item in a dataset and broadens 

it to the frequent item sets in a dataset. In Apriori algorithm, 

the frequency of the item sets are handled using a threshold 

value of C. Apriori uses ‘Candidate Generation’ a bottom-up 

approach to extend a single frequent item into frequent item 

sets. This process continues until there are no successful 

Candidate Generations.  Candidate Item sets’ count is 

calculated using Hash-Tree structure and breath-first-search 

by Apriori. It can generate candidate item set with length of k 

from item set length k-1. Then the frequent item sets are 

determined from the candidates. 

If T is a transaction database with support threshold ∈ then the 

pseudo code for Apriori will be 

Apriori(𝑇, 𝜖)   

 L1 = { Large 1 – itemsets } 

 K= 2 

 while 𝐿𝑘−1 ≠ ∅ 

  𝐶𝑘  =  𝑎𝑈  𝑏  𝑎𝜖 𝐿𝑘−1 ∧ 𝑏 ∉ 𝑎} − {𝑐| 𝑠 𝑠 ⊆ 𝑐 ∧
 s =  𝑘 − 1} ⊈ 𝐿𝑘−1}  

  for transactions 𝑡 ∈ 𝑇 

   𝐶𝑡  = { 𝑐 | 𝑐 ∈ 𝐶𝑘  ∧  𝑐 ⊆ 𝑡 } 

   for candidates 𝑐 ∈ 𝐶𝑡  

    count[c] = count[c] + 1 

  𝐿𝑘 = {c|c ∈ 𝐶𝑘 ∧ 𝑐𝑜𝑢𝑛𝑡 𝑐  ≥ ∈ }  

  k = k + 1 

 return ⋃
𝑘
𝐿𝑘  

where 𝐶𝑘  is the candidate set for level 𝑘. 

In Apriori algorithm, Candidate Generation is a resource 

consuming process that involves large number of subsets 

scans. Bottom-up approach in breadth-first traversal can find 

maximum subset count only after finding all 2 𝑠 − 1 proper 

subsets. This disadvantage makes it difficult to use Apriori 

algorithm with larger database. To overcome this issue some 

other procedures are introduced. 

2.2 FP-Growth 
FP-Growth[2] technique is based on FP-Tree construction – 

first phase process helps to extract frequent item sets which is 

the second phase process. Here frequent item sets are 

extracted directly form FP-Tree therefore resource consuming 

candidate generation process is eliminated. FP-Tree is 

constructed by scanning database to find support count for 

each item. Rare items are eliminated. Frequent item sets are 

arranged in descending order based on their support count. 

Nodes are used to represent the items and facilitated with a 

counter. FP-Growth reads a transaction and maps it to a path. 

Counters are incremented whenever there is a overlap found 

the particular path. Single linked list is used to maintain the 

FP-Tree[3][4]. When all transactions share a same path, then 

there will be a single path in the FP-Tree and this is 

considered as the best scenario for FP-Growth. If all 

transactions are performed with unique items - that is there are 
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no items in common between transactions, then the size of the 

FP-Tree will be as large as the actual data.  

FP-Tree Structure: 

 1. Root Node (Null Node) which holds item-prefix sub-trees 

is used to initializes tree structure 

 2. Each item prefix sub-tree node consists three fields {Item 

Name, Count, Next Node Link} 

 3. Frequent-Item-header table consists of two fields {Item 

Name, Link to first node} 

 4. Frequent –Item-header table has optional support count for 

an item 

 

FP-Tree Construction Pseudo code: 

FPTree ConstructFPTree(Transaction Database DB) 

1. Perform DB scan, Accumulate F (set of frequent 

items) and the support of each frequent item. Sort F in 

support-descending order in the list of frequent items named 

FList 

2. Initialize Tree with Root Node T (null Node) 

3. For each transaction Trans in DB do the following: 

i. Assort frequent items from transactions and sort them based 

on the order of FList.  

ii. Represent sorted frequent-item list as [p | P], where p is the 

first element and P is the remaining list 

iii. If T has a child N 

 then item-name = p 

 N = N+1 

      Else Create new node N with count 1 

iv. Repeat step iii recursively for full database 

 The size of the FP-Tree depends on the order of the items. 

Therefore the memory consumption of FP-Growth is very 

high in general when large databases are involved.  

2.3. ECLAT 
 Eclat[5] is recursively defined procedure to perform item set 

mining that is used to frequent pattern identification. These 

frequent patterns are also called as association rules. Eclat 

uses Tidset[6] intersections to compute candidate item set 

support count and avoids generation of candidate subsets 

those are not present in prefix tree.  

 The initial Eclat call uses all the single item sets with their 

transaction IDs (tids). Then the recursive calls are initialized 

to verify all itemset-tidset pair  𝑋, 𝑡 𝑋   with other pairs 
 𝑌, 𝑡 𝑌   to generate new candidates 𝑁𝑋𝑌 . Whenever the new 

candidates is found to be frequent, then it is added with set 𝑃𝑋 . 

Pseudo code: 

 1. Let S be an Item set 

 2. T is the transaction tag 

 3. Multiset transaction U =  𝑋 ∈  𝑇 𝑆 ⊆ 𝑡  

 4. Absolute Support of S =  𝑈  =  | 𝑋 ∈  𝑇 𝑆 ⊆ 𝑡 | 

 5. Relative support of S =   𝑈 ∕  𝑇  ∗ 100%; where 
 𝑈  and  𝑇  are the number of elements in U and T 

respectively 

 6. The anti-monotone support is ∀ 𝐼, 𝐽:  𝐽 ⊆ 𝐼 = (supp 𝐽 ≥
supp 𝐼 ) 

 Eclat’s Depth-First-Search procedure and its vertical database 

layout causes more time for intersection of Tidlists. When the 

database is considerably large, the memory consumption of 

Eclat’s is large and occupying other computational resources 

makes it less manageable. 

2.4 DFEM 
 DFEM[7] refers Dynamic FP-Tree and Eclat Method. It uses 

both FP-Growth and Eclat algorithms for mining. A threshold 

value is used to determine the switching process between FP-

Growth and Eclat algorithm. DFEM has four major modules, 

they are Construction of FP-Tree, Mining FP-Tree, Mining 

Bit Vector and updating the threshold. 

FP-Tree Construction Procedure: 

1. Find frequent items by scanning the database 

2. Construct FP-Tree based on the scan results 

3. Call FP-Tree Mining 

 

FP-Tree Mining Procedure: 

 1. If FP-Tree has a single path, then all combinations of X 

nodes P = X ∪ suffix 

 2. For all Items of Y in the header table P = Y ∪ suffix 

 3. Construct Conditional pattern of Y based on C 

 4. If number of nodes in Y > K, then construct Y’s conditional 

FP-Tree and call FP-Mining Procedure recursively 

 5. Else transform C into Bit Vector V, Weight Vector W and 

call Bit Vector Mining 

  

 Bit Vector Mining Procedure: 

 1. Arrange V based on its item support in descending order 

 2. For each vector 𝑣𝑖  in V 

  Output = 𝑣𝑖  ∪ suffix 

 3. For each vector 𝑣𝑘  in V, where k<i 

  𝑢𝑘 = 𝑣𝑖  AND 𝑣𝑘  

 4. 𝑠𝑢𝑝𝑘 = support of 𝑢𝑘  based on weight 𝑤 

 5. If all 𝑢𝑘  in U are identical to 𝑣𝑖 , then for each combination 

of X in U output = X ∪ output 

 else if U is empty, then call Bit Vector  Mining again 

 

 Threshold updating procedure:  

 In DFEM, FP-Tree mining[8] has a set of values of threshold 

K as K= 𝑘0, 𝑘1…𝑘𝑛 . The difference between previous pattern 

𝑃𝑖−1 and current pattern 𝑃𝑖  is represented as 𝑅𝑖 . 𝑅𝑖  is 

calculated as  

𝑅𝑖 =  
𝑃𝑖−1

𝑃𝑖 ,  𝑖 = 1 𝑡𝑜 𝑁 
 

  The value of K is finalized using the condition

 (∌ 𝑅𝑗 > 2, ∀𝑗 > 𝑘) ∈ 𝑅𝑖 < 2 
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 Threshold updating pseudo code: 

  1. If Update K called for the first time 

   Then Create an array P with N elements. 

  2. Initialize the array with zero 

  3. For i=0 to N-1 

   If size > I * size then 𝑃𝑖  = 𝑃𝑖  + New 

Pattern 

   Else exit loop 

  4. Initalize K as Zero (K=0) 

  5. For i=N-1 to 1 

   If 𝑅𝑖  ≥ 2 then K=(i+1) * step  

  6. exit loop 

 DFEM is quicker and more accurate than the previous 

methods. But the memory consumption is comparatively high 

when dealing with a larger size database.  

2.5 MEFP 
 Memory Efficient Frequent Pattern mining[9][10] uses 

transposition of database. The space complexity of MEFP is 

𝑂 𝑛  and the longest common sequence space complexity is 

𝑂 𝑛2 . The time consumption of MEFP is  𝑂 𝑚𝑛 . It uses X 

data or Y data based on the quantity of support counts. The 

space is either 𝑂 𝑚  or 𝑂 𝑛  whichever is smaller.  

 MEFP Procedure: 

 1. Convert Database DB into Transpose Form DT 

 2. Compute F1 for all frequent Items 

 3. C1 = DT [Frequent Item Row with Transaction ID String] 

 4. Assign K=2 

 5. While Lk-1 ≠ {𝐾} do 

  Compute 𝐶𝑘  for all candidates k-1 item sets 

  Compute Lk = APS(𝐶𝑘) 

  Increment the value of K by 1 

 In MEFP, there is a need to shift rows and columns and X-Y 

variable values interchanging[11][12] takes more time. Even 

though MEFP consumes lesser memory, the time for 

formatting frequent patterns and generating corresponding 

association rules takes more time for larger databases.  

3. PROPOSED METHOD 
 Dynamic Memory Efficient Frequent Pattern (DME-FP) 

procedure introduces a new node type named Tree Pattern 

Node (TPN). It also introduces Repeat Pattern Table (RPT) – 

a table to manage TPN. This procedure is designed with 

caution to handle computational resources[13][ like 

memory[14] and time[15] with improved basic metrics of a 

data mining procedure of accuracy, precision and recall.   

 Table 1 contains a transaction history with different item sets 

of items {a, b, c, d, e, j, k, l, m, n}. As given in table, the 

transactions can be any possible combination of the taken 

items.   

Table 1 

TID Items 

1 {a,b} 

2 {b,c,d} 

3 {a,c,d,e} 

4 {a,d,e} 

5 {a,b,c} 

6 {a,b,c,d} 

7 {a} 

8 {a,b,c} 

9 {a,b,d} 

10 {b,c,e} 

11 {c,j,k} 

12 {c,k,l,m} 

13 {c,j,l,m,n} 

14 {c,j,m,n} 

15 {c,j,k,l} 

16 {c,j,k,l,m} 

17 {c,j} 

18 {c,j,k,l} 

19 {c,j,k,m} 

20 {c,k,l,n} 

 

A typical FP-Tree structure will be formed as in Figure 1 
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Figure 1 

 
 If the size of a node is declared as 𝜎, then the size of the tree 

will be 30𝜎. A typical FP-Tree node with three child nodes 

consumes 768 (𝜎 ) bits on average. Table 2 shows memory 

allocation of a typical FP-Tree Node 

Table 2 

Purpose Size(bits) 

Parent Address 64 

Transaction Item-ID 416 

Count 64 

Child Node Count (nc) 32 

Child Node Address nc * 64 

 

 Therefore to construct a FP-Tree as shown in Figure 2, the 

memory consumption will be 23040 Bytes. This implies to 

handle twenty transactions with ten different items FP-Tree 

method requires 2880 Bytes of memory. Modern databases 

contain vast number of items with large number of 

transactions. To organize a complete database into FP-Tree 

for analysis will be a memory starving process.  

 Proposed DME-FP uses a different type of tree nodes. Since 

DME-FP has an additional node type of TPN, one more field 

with single bit length is added with the default FP-Tree Node. 

So the size of a DME-FP node will be 769 bits. DME-FP node 

architecture is given in Table 3 

 

 

 

 

 

Table 3 

Purpose Size(bits) 

Node Type 1 

Parent Address 64 

Transaction Item-ID 416 

Count 64 

Child Node Count (nc) 32 

Child Node Address nc * 64 

 

 The Node Type field will have the value 0 is to represent a 

regular node and 1 is to represent a Tree Pattern Node. In 

DME-FP, a RPT consists of four fixed length fields and a 

variable length field. Pattern ID, Root Node ID, Number of 

nodes in BFS and Number of Substitute Items Count are fixed 

with 16 bits, 64 bits, 8 bits and 4 bits respectively. The 

Number of nodes in BFS filed can hold up to 255 refers a 

pattern can have  

255 nodes maximum including the root node. The fifth 

variable length field is based on the fourth field Substitute 

Item Count. If the value of Substitute Item count is 𝜂 then the 

size of fifth filed will be 𝜂 × 416 bits. Since the size of 

Substitute Item Count is limited to 4 bits, the value of 𝜂 can 

go up to 16. This refers the number of substitute items can be 

16 at maximum.  

For the transaction history as in Table 1, Repeat Pattern Table 

will be generated as follows 

Pattern 
ID Root Node ID 

Number of Nodes 
on BFS 

Substitute Item 
Count 

Substitute 
Items 

1 Address (null) 15 (00001111) 5 (0101) j,k,l,m,n 
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Figure 2 

 The size of this RPT is 1664 bits. The DME-FP tree 

representation for the transaction history is shown in Figure 2. 

 This DME-FP Tree the size of 15 regular nodes is 11535 bits, 

the size of 1 tree pattern node is 577 bits and the size of RPT 

is 1664 bits. In total, the DME-FP tree consumes 13776 bits 

(12112 bits for tree + 1664 for RPT) whereas regular FP-Tree 

consumes 23040 bits for the same transaction history. Content 

of tree pattern node PN1 is given in table 4. 

 Overall memory preservation of DME-FP over regular FP-

Tree is 9264 bits (1158 Bytes). This proves using DME-FP 

saves greater than 1KB of memory for a 20 item set 

transaction history. 

Table 4 

Field Value Size (Bits) 

Node Type 1 1 

Parent Address Address(null) 64 

Transaction 

Item ID 11 416 

Count 1 64 

Child Node 

Count 0 32 

Child Node 

Address 0 0 

  Total Size 577 

4.  EXPERIMENTAL SETUP 
To evaluate the performance of DME-FP procedure, 

benchmark datasets Chess, Kosarak, Mushroom, 

pumbsb_star, Retail and T10I4D100K are used. Accuracy, 

Precision, Recall, Processing Time and Memory are measured 

with noted datasets and for a comparative analysis, existing 

methods Apriori, FP-Growth, Eclat, DFEM and MEFP are 

taken. The processing time and memory consumption are 

measured in a computer with Processor 2.4 GHz i5-4210U 

Quad-core processor and 4GB RAM. Visual Studio IDE is 

used to develop the user interface and VC++ programming 

language is used to code the proposed method. Standard data 

mining libraries are used to evaluate existing methods. 

Readings are measured up to 100000 records in equal interval 

of 10000 records for all methods.  

5.  RESULTS AND ANALYSIS 
 Accuracy is one of the vital parameter in data mining. It refers 

number of correct predictions over total number of 

predictions. The higher accuracy indicates the higher stability 

of the data mining procedure. DME-FP achieved highest 

accuracy of 92.92% with the average of 91.25%. The nearest 

accuracy is achieved by MEFP. MEFP gains 89.91% of 

highest accuracy with the average of 88.89%. Remaining 

methods Apriori, FP-Growth, Eclat and DFEM are scoring 

79.91%, 82.43%, 85.45% and 86.64% of accuracy 

respectively.  

 The accuracy report is given in table 5 and compared in 

Figure 3. 

Table 5 

Accuracy (%) 

Records Apriori FP-Growth Eclat DFEM MEFP DME-FP 

10000 80.56 83.59 86.63 87.66 89.69 92.73 

20000 80.98 81.24 84.51 85.78 87.37 90.63 

30000 79.44 83.96 85.49 85.01 88.53 90.05 

40000 80.42 82.12 84.5 87.2 88.58 90.29 

50000 79.64 82.12 85.27 85.75 87.9 91.06 

60000 79.86 81.76 84.35 87.94 88.85 91.43 

70000 78.55 81.56 86.89 87.9 89.91 92.92 

80000 79.2 83.96 85.72 85.47 89.23 90.98 

90000 80.91 81.61 85.32 87.03 89.73 90.44 

100000 79.59 82.39 85.87 86.66 89.14 91.94 
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Figure 3 

Table 6 

 Precision (%) 

Records Apriori FP-Growth Eclat DFEM MEFP DME-FP 

10000 80.72 83.56 87.08 87.59 89.43 92.95 

20000 81.13 81.52 84.23 85.63 87.34 90.73 

30000 79.08 84.04 85.01 84.97 88.93 89.89 

40000 80.07 82.27 84.15 87.35 88.23 90.12 

50000 79.33 81.94 84.9 85.51 87.47 90.76 

60000 80.15 81.45 84.45 88.12 88.44 91.42 

70000 78.2 81.9 86.59 88.29 89.99 93.37 

80000 79.55 84.19 85.5 85.81 89.13 91.44 

90000 80.65 81.99 85.03 87.39 89.41 90.77 

100000 79.77 82.87 85.65 87.05 88.83 91.92 

Precision score determines the reliability of a data mining 

procedure. Higher precision refers higher reliability. DME-FP 

achieved highest precision value of 93.37% with precision average 

of 91.34% whereas MEFP achieved 89.99% of highest precision 

with the average of 88.72%. Precision measurement values for 

proposed method along with existing methods are given in Table 6 

and compared in graph given as Figure 4. 

Figure 4 

Recall refers the fraction of successfully retrieved relevant items 

and it is an important parameter in data mining. A good mining 

procedure should score higher recall values. As per the readings, 

DME-FP reached 92.8% recall score with 91.22% average 

whereas other existing methods in comparison scored below 

90% of recall value. Observed recall values are given in Table 7 

and the comparison chart is given in Figure 5. 
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Table 7 

Recall (%) 

Records Apriori FP-Growth Eclat DFEM MEFP DME-FP 

10000 80.46 83.45 86.13 88.13 89.8 92.8 

20000 80.97 80.95 84.95 85.95 87.26 90.25 

30000 79.68 83.91 85.83 85.06 88.29 90.2 

40000 80.6 82.55 84.5 87.45 88.4 90.37 

50000 79.44 82.07 85.69 85.31 87.93 91.24 

60000 79.38 81.36 84.71 88.37 89.04 91.7 

70000 78.24 81.88 86.52 87.84 89.48 92.8 

80000 79.35 84.25 85.82 85.7 89.27 90.83 

90000 80.41 81.11 84.82 86.53 89.55 90.25 

100000 79.4 82.88 86.36 86.83 88.99 91.79 

 

 

Figure 5 

 

Processing time of a data mining procedure is also a parameter 

that determines the quality. A good data mining procedure has 

to produce results with a reasonable time. DME-FP consumed 

2918mS of average processing time to process a data block. 

Apriori consumes the least time of 2324mS average processing 

time which is lesser than DME-FP. FP-Growth, Eclat, DFEM 

and MEFP consumed 4072mS, 3677mS, 3548ms and 3306mS 

respectively. While comparing other methods excluding Apriori, 

DME-FP consumed lesser time. With the betterment in other 

parameters the 594mS time delay can be compromised. 

Complete processing time readings for all methods are given in 

Table 8. A comparison graph of processing times is given in 

Figure 6. 

 

Average Processing Time (mS) 

Records Apriori FP-Growth Eclat DFEM MEFP DME-FP 

10000 2353 4096 3672 3549 3400 2987 

20000 2230 4174 3618 3483 3295 2870 

30000 2338 3984 3583 3575 3329 2819 

40000 2370 4049 3773 3584 3251 2986 

50000 2228 4003 3610 3518 3281 2991 

60000 2308 4185 3591 3509 3374 3003 

70000 2324 4147 3683 3519 3210 2969 

80000 2369 4040 3756 3560 3219 2826 

90000 2414 3989 3729 3557 3332 2870 

100000 2306 4053 3752 3631 3366 2864 
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Table 8 

 

Figure 6 

 

Memory is one of the important computational resources. More 

memory consumption affects the stability of data mining 

procedures. While handling large number of item sets and 

transaction history, consuming more memory will slow down 

the process. DME-FP consumed 1844 Bytes to process a data 

block. The nearest performance method MEFP consumed 2304 

Bytes. Apriori consumed the least average memory of 1802 

Bytes. Average memory consumption to process a data block by 

all the methods are recorded in table 9. Memory comparison 

chart is given in Figure 7. 

Table 9

 Memory (B) 

Records Apriori FP-Growth Eclat DFEM MEFP DME-FP 

10000 1821 3586 2902 2817 2312 1846 

20000 1781 3583 2905 2825 2307 1846 

30000 1787 3611 2924 2848 2302 1832 

40000 1807 3614 2909 2815 2302 1865 

50000 1804 3607 2930 2815 2298 1821 

60000 1792 3609 2915 2832 2329 1852 

70000 1786 3598 2948 2810 2320 1820 

80000 1821 3580 2927 2804 2311 1858 

90000 1809 3586 2900 2826 2283 1865 

100000 1808 3610 2900 2802 2284 1842 
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Figure 7 

6. CONCLUSION 
 Based on the experimental results DME-FP scored higher in 

standard data mining parameters of accuracy, precision and 

recall. The variation in consumption of computational resources 

like processing time and memory is very lesser to achieve more 

reliable association rules in proposed DME-FP. The introduction 

of TPN and RPT results improved performance of proposed 

DME-FP makes it is more suitable to use in modern data 

analytical processes.  
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