
International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

32

Dynamic Memory Efficient Frequent Pattern Growth for

Data Excavation

G. Gunasekaran
Assistant Professor of Computer Science

Nehru Memorial College
Puthnampatti, Trichy

 S. Murugan, PhD
Associate Professor of Computer Science

Nehru Memorial College
Puthnampatti, Trichy

ABSTRACT
Advancements in information technology increase the data

volume of many domains into manyfold. Dynamic Memory

Efficient Frequent Pattern (DMEFP) technique introduces new

methods to represent data and redundant frequent patterns.

Introduction of Repeat Pattern Table (RPT) and new node

type ‘Tree Pattern Node’ (TPN) in frequent pattern tree

softens the data mining process to be performed in a modern

way. DMEFP technique comprises new rules to aggregate

pattern nodes and RPT. Computational resources are used

sagely in DMEFP technique for data mining. Reduced

resource consumption helps to parse large amount of data in

short time durations without much complexity.

Keywords
 Information Technology, Data Mining, FP-Growth, Frequent

Pattern Tree, Memory efficient data mining

1. INTRODUCTION
Finding correlations between associated data create a valuable

cognition. Modern databases are huge in volume and require

complex procedures for parsing. Data mining techniques are

designed to perform deviation detection, dependency

modelling (association rule learning), clustering, classifying,

regression and summarization. Association rules are used to

relate data items in a procedural way. Deviation detection

otherwise called as Anomaly detection is a process of

identifying unusual records in a dataset. An anonymous record

requires special investigation to find whether the transaction is

occurred by mistake or a special rule has to be introduced to

validate the record. Dependency modelling is used to define

the relationships between the variables in the transaction

records. Clustering is used to find and organize same or

similar group of records under a common label. Classification

procedure is used to identify a new record based on the

existing known structures created by clustering. Regression is

used to introduce a common function to correlate the data of

same group with no or least errors. This is used to estimate the

relationships within records or datasets. Summarization is

used to enable data structure visualizations and to produce

reports based on different requirements.

2. EXISTING SYSTEMS

2.1 Apriori
Apriori[1] is a standard well known procedure for extracting

association rules from binary transaction databases. Apriori

starts with a frequent individual item in a dataset and broadens

it to the frequent item sets in a dataset. In Apriori algorithm,

the frequency of the item sets are handled using a threshold

value of C. Apriori uses ‘Candidate Generation’ a bottom-up

approach to extend a single frequent item into frequent item

sets. This process continues until there are no successful

Candidate Generations. Candidate Item sets’ count is

calculated using Hash-Tree structure and breath-first-search

by Apriori. It can generate candidate item set with length of k

from item set length k-1. Then the frequent item sets are

determined from the candidates.

If T is a transaction database with support threshold ∈ then the

pseudo code for Apriori will be

Apriori(𝑇, 𝜖)

 L1 = { Large 1 – itemsets }

 K= 2

 while 𝐿𝑘−1 ≠ ∅

 𝐶𝑘 = 𝑎𝑈 𝑏 𝑎𝜖 𝐿𝑘−1 ∧ 𝑏 ∉ 𝑎} − {𝑐| 𝑠 𝑠 ⊆ 𝑐 ∧
 s = 𝑘 − 1} ⊈ 𝐿𝑘−1}

 for transactions 𝑡 ∈ 𝑇

 𝐶𝑡 = { 𝑐 | 𝑐 ∈ 𝐶𝑘 ∧ 𝑐 ⊆ 𝑡 }

 for candidates 𝑐 ∈ 𝐶𝑡

 count[c] = count[c] + 1

 𝐿𝑘 = {c|c ∈ 𝐶𝑘 ∧ 𝑐𝑜𝑢𝑛𝑡 𝑐 ≥ ∈ }

 k = k + 1

 return ⋃
𝑘
𝐿𝑘

where 𝐶𝑘 is the candidate set for level 𝑘.

In Apriori algorithm, Candidate Generation is a resource

consuming process that involves large number of subsets

scans. Bottom-up approach in breadth-first traversal can find

maximum subset count only after finding all 2 𝑠 − 1 proper

subsets. This disadvantage makes it difficult to use Apriori

algorithm with larger database. To overcome this issue some

other procedures are introduced.

2.2 FP-Growth
FP-Growth[2] technique is based on FP-Tree construction –

first phase process helps to extract frequent item sets which is

the second phase process. Here frequent item sets are

extracted directly form FP-Tree therefore resource consuming

candidate generation process is eliminated. FP-Tree is

constructed by scanning database to find support count for

each item. Rare items are eliminated. Frequent item sets are

arranged in descending order based on their support count.

Nodes are used to represent the items and facilitated with a

counter. FP-Growth reads a transaction and maps it to a path.

Counters are incremented whenever there is a overlap found

the particular path. Single linked list is used to maintain the

FP-Tree[3][4]. When all transactions share a same path, then

there will be a single path in the FP-Tree and this is

considered as the best scenario for FP-Growth. If all

transactions are performed with unique items - that is there are

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

33

no items in common between transactions, then the size of the

FP-Tree will be as large as the actual data.

FP-Tree Structure:

 1. Root Node (Null Node) which holds item-prefix sub-trees

is used to initializes tree structure

 2. Each item prefix sub-tree node consists three fields {Item

Name, Count, Next Node Link}

 3. Frequent-Item-header table consists of two fields {Item

Name, Link to first node}

 4. Frequent –Item-header table has optional support count for

an item

FP-Tree Construction Pseudo code:

FPTree ConstructFPTree(Transaction Database DB)

1. Perform DB scan, Accumulate F (set of frequent

items) and the support of each frequent item. Sort F in

support-descending order in the list of frequent items named

FList

2. Initialize Tree with Root Node T (null Node)

3. For each transaction Trans in DB do the following:

i. Assort frequent items from transactions and sort them based

on the order of FList.

ii. Represent sorted frequent-item list as [p | P], where p is the

first element and P is the remaining list

iii. If T has a child N

 then item-name = p

 N = N+1

 Else Create new node N with count 1

iv. Repeat step iii recursively for full database

 The size of the FP-Tree depends on the order of the items.

Therefore the memory consumption of FP-Growth is very

high in general when large databases are involved.

2.3. ECLAT
 Eclat[5] is recursively defined procedure to perform item set

mining that is used to frequent pattern identification. These

frequent patterns are also called as association rules. Eclat

uses Tidset[6] intersections to compute candidate item set

support count and avoids generation of candidate subsets

those are not present in prefix tree.

 The initial Eclat call uses all the single item sets with their

transaction IDs (tids). Then the recursive calls are initialized

to verify all itemset-tidset pair 𝑋, 𝑡 𝑋 with other pairs
 𝑌, 𝑡 𝑌 to generate new candidates 𝑁𝑋𝑌 . Whenever the new

candidates is found to be frequent, then it is added with set 𝑃𝑋 .

Pseudo code:

 1. Let S be an Item set

 2. T is the transaction tag

 3. Multiset transaction U = 𝑋 ∈ 𝑇 𝑆 ⊆ 𝑡

 4. Absolute Support of S = 𝑈 = | 𝑋 ∈ 𝑇 𝑆 ⊆ 𝑡 |

 5. Relative support of S = 𝑈 ∕ 𝑇 ∗ 100%; where
 𝑈 and 𝑇 are the number of elements in U and T

respectively

 6. The anti-monotone support is ∀ 𝐼, 𝐽: 𝐽 ⊆ 𝐼 = (supp 𝐽 ≥
supp 𝐼)

 Eclat’s Depth-First-Search procedure and its vertical database

layout causes more time for intersection of Tidlists. When the

database is considerably large, the memory consumption of

Eclat’s is large and occupying other computational resources

makes it less manageable.

2.4 DFEM
 DFEM[7] refers Dynamic FP-Tree and Eclat Method. It uses

both FP-Growth and Eclat algorithms for mining. A threshold

value is used to determine the switching process between FP-

Growth and Eclat algorithm. DFEM has four major modules,

they are Construction of FP-Tree, Mining FP-Tree, Mining

Bit Vector and updating the threshold.

FP-Tree Construction Procedure:

1. Find frequent items by scanning the database

2. Construct FP-Tree based on the scan results

3. Call FP-Tree Mining

FP-Tree Mining Procedure:

 1. If FP-Tree has a single path, then all combinations of X

nodes P = X ∪ suffix

 2. For all Items of Y in the header table P = Y ∪ suffix

 3. Construct Conditional pattern of Y based on C

 4. If number of nodes in Y > K, then construct Y’s conditional

FP-Tree and call FP-Mining Procedure recursively

 5. Else transform C into Bit Vector V, Weight Vector W and

call Bit Vector Mining

 Bit Vector Mining Procedure:

 1. Arrange V based on its item support in descending order

 2. For each vector 𝑣𝑖 in V

 Output = 𝑣𝑖 ∪ suffix

 3. For each vector 𝑣𝑘 in V, where k<i

 𝑢𝑘 = 𝑣𝑖 AND 𝑣𝑘

 4. 𝑠𝑢𝑝𝑘 = support of 𝑢𝑘 based on weight 𝑤

 5. If all 𝑢𝑘 in U are identical to 𝑣𝑖 , then for each combination

of X in U output = X ∪ output

 else if U is empty, then call Bit Vector Mining again

 Threshold updating procedure:

 In DFEM, FP-Tree mining[8] has a set of values of threshold

K as K= 𝑘0, 𝑘1…𝑘𝑛 . The difference between previous pattern

𝑃𝑖−1 and current pattern 𝑃𝑖 is represented as 𝑅𝑖 . 𝑅𝑖 is

calculated as

𝑅𝑖 =
𝑃𝑖−1

𝑃𝑖 , 𝑖 = 1 𝑡𝑜 𝑁

 The value of K is finalized using the condition

 (∌ 𝑅𝑗 > 2, ∀𝑗 > 𝑘) ∈ 𝑅𝑖 < 2

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

34

 Threshold updating pseudo code:

 1. If Update K called for the first time

 Then Create an array P with N elements.

 2. Initialize the array with zero

 3. For i=0 to N-1

 If size > I * size then 𝑃𝑖 = 𝑃𝑖 + New

Pattern

 Else exit loop

 4. Initalize K as Zero (K=0)

 5. For i=N-1 to 1

 If 𝑅𝑖 ≥ 2 then K=(i+1) * step

 6. exit loop

 DFEM is quicker and more accurate than the previous

methods. But the memory consumption is comparatively high

when dealing with a larger size database.

2.5 MEFP
 Memory Efficient Frequent Pattern mining[9][10] uses

transposition of database. The space complexity of MEFP is

𝑂 𝑛 and the longest common sequence space complexity is

𝑂 𝑛2 . The time consumption of MEFP is 𝑂 𝑚𝑛 . It uses X

data or Y data based on the quantity of support counts. The

space is either 𝑂 𝑚 or 𝑂 𝑛 whichever is smaller.

 MEFP Procedure:

 1. Convert Database DB into Transpose Form DT

 2. Compute F1 for all frequent Items

 3. C1 = DT [Frequent Item Row with Transaction ID String]

 4. Assign K=2

 5. While Lk-1 ≠ {𝐾} do

 Compute 𝐶𝑘 for all candidates k-1 item sets

 Compute Lk = APS(𝐶𝑘)

 Increment the value of K by 1

 In MEFP, there is a need to shift rows and columns and X-Y

variable values interchanging[11][12] takes more time. Even

though MEFP consumes lesser memory, the time for

formatting frequent patterns and generating corresponding

association rules takes more time for larger databases.

3. PROPOSED METHOD
 Dynamic Memory Efficient Frequent Pattern (DME-FP)

procedure introduces a new node type named Tree Pattern

Node (TPN). It also introduces Repeat Pattern Table (RPT) –

a table to manage TPN. This procedure is designed with

caution to handle computational resources[13][like

memory[14] and time[15] with improved basic metrics of a

data mining procedure of accuracy, precision and recall.

 Table 1 contains a transaction history with different item sets

of items {a, b, c, d, e, j, k, l, m, n}. As given in table, the

transactions can be any possible combination of the taken

items.

Table 1

TID Items

1 {a,b}

2 {b,c,d}

3 {a,c,d,e}

4 {a,d,e}

5 {a,b,c}

6 {a,b,c,d}

7 {a}

8 {a,b,c}

9 {a,b,d}

10 {b,c,e}

11 {c,j,k}

12 {c,k,l,m}

13 {c,j,l,m,n}

14 {c,j,m,n}

15 {c,j,k,l}

16 {c,j,k,l,m}

17 {c,j}

18 {c,j,k,l}

19 {c,j,k,m}

20 {c,k,l,n}

A typical FP-Tree structure will be formed as in Figure 1

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

35

Figure 1

 If the size of a node is declared as 𝜎, then the size of the tree

will be 30𝜎. A typical FP-Tree node with three child nodes

consumes 768 (𝜎) bits on average. Table 2 shows memory

allocation of a typical FP-Tree Node

Table 2

Purpose Size(bits)

Parent Address 64

Transaction Item-ID 416

Count 64

Child Node Count (nc) 32

Child Node Address nc * 64

 Therefore to construct a FP-Tree as shown in Figure 2, the

memory consumption will be 23040 Bytes. This implies to

handle twenty transactions with ten different items FP-Tree

method requires 2880 Bytes of memory. Modern databases

contain vast number of items with large number of

transactions. To organize a complete database into FP-Tree

for analysis will be a memory starving process.

 Proposed DME-FP uses a different type of tree nodes. Since

DME-FP has an additional node type of TPN, one more field

with single bit length is added with the default FP-Tree Node.

So the size of a DME-FP node will be 769 bits. DME-FP node

architecture is given in Table 3

Table 3

Purpose Size(bits)

Node Type 1

Parent Address 64

Transaction Item-ID 416

Count 64

Child Node Count (nc) 32

Child Node Address nc * 64

 The Node Type field will have the value 0 is to represent a

regular node and 1 is to represent a Tree Pattern Node. In

DME-FP, a RPT consists of four fixed length fields and a

variable length field. Pattern ID, Root Node ID, Number of

nodes in BFS and Number of Substitute Items Count are fixed

with 16 bits, 64 bits, 8 bits and 4 bits respectively. The

Number of nodes in BFS filed can hold up to 255 refers a

pattern can have

255 nodes maximum including the root node. The fifth

variable length field is based on the fourth field Substitute

Item Count. If the value of Substitute Item count is 𝜂 then the

size of fifth filed will be 𝜂 × 416 bits. Since the size of

Substitute Item Count is limited to 4 bits, the value of 𝜂 can

go up to 16. This refers the number of substitute items can be

16 at maximum.

For the transaction history as in Table 1, Repeat Pattern Table

will be generated as follows

Pattern
ID Root Node ID

Number of Nodes
on BFS

Substitute Item
Count

Substitute
Items

1 Address (null) 15 (00001111) 5 (0101) j,k,l,m,n

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

36

Figure 2

 The size of this RPT is 1664 bits. The DME-FP tree

representation for the transaction history is shown in Figure 2.

 This DME-FP Tree the size of 15 regular nodes is 11535 bits,

the size of 1 tree pattern node is 577 bits and the size of RPT

is 1664 bits. In total, the DME-FP tree consumes 13776 bits

(12112 bits for tree + 1664 for RPT) whereas regular FP-Tree

consumes 23040 bits for the same transaction history. Content

of tree pattern node PN1 is given in table 4.

 Overall memory preservation of DME-FP over regular FP-

Tree is 9264 bits (1158 Bytes). This proves using DME-FP

saves greater than 1KB of memory for a 20 item set

transaction history.

Table 4

Field Value Size (Bits)

Node Type 1 1

Parent Address Address(null) 64

Transaction

Item ID 11 416

Count 1 64

Child Node

Count 0 32

Child Node

Address 0 0

 Total Size 577

4. EXPERIMENTAL SETUP
To evaluate the performance of DME-FP procedure,

benchmark datasets Chess, Kosarak, Mushroom,

pumbsb_star, Retail and T10I4D100K are used. Accuracy,

Precision, Recall, Processing Time and Memory are measured

with noted datasets and for a comparative analysis, existing

methods Apriori, FP-Growth, Eclat, DFEM and MEFP are

taken. The processing time and memory consumption are

measured in a computer with Processor 2.4 GHz i5-4210U

Quad-core processor and 4GB RAM. Visual Studio IDE is

used to develop the user interface and VC++ programming

language is used to code the proposed method. Standard data

mining libraries are used to evaluate existing methods.

Readings are measured up to 100000 records in equal interval

of 10000 records for all methods.

5. RESULTS AND ANALYSIS
 Accuracy is one of the vital parameter in data mining. It refers

number of correct predictions over total number of

predictions. The higher accuracy indicates the higher stability

of the data mining procedure. DME-FP achieved highest

accuracy of 92.92% with the average of 91.25%. The nearest

accuracy is achieved by MEFP. MEFP gains 89.91% of

highest accuracy with the average of 88.89%. Remaining

methods Apriori, FP-Growth, Eclat and DFEM are scoring

79.91%, 82.43%, 85.45% and 86.64% of accuracy

respectively.

 The accuracy report is given in table 5 and compared in

Figure 3.

Table 5

Accuracy (%)

Records Apriori FP-Growth Eclat DFEM MEFP DME-FP

10000 80.56 83.59 86.63 87.66 89.69 92.73

20000 80.98 81.24 84.51 85.78 87.37 90.63

30000 79.44 83.96 85.49 85.01 88.53 90.05

40000 80.42 82.12 84.5 87.2 88.58 90.29

50000 79.64 82.12 85.27 85.75 87.9 91.06

60000 79.86 81.76 84.35 87.94 88.85 91.43

70000 78.55 81.56 86.89 87.9 89.91 92.92

80000 79.2 83.96 85.72 85.47 89.23 90.98

90000 80.91 81.61 85.32 87.03 89.73 90.44

100000 79.59 82.39 85.87 86.66 89.14 91.94

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

37

Figure 3

Table 6

 Precision (%)

Records Apriori FP-Growth Eclat DFEM MEFP DME-FP

10000 80.72 83.56 87.08 87.59 89.43 92.95

20000 81.13 81.52 84.23 85.63 87.34 90.73

30000 79.08 84.04 85.01 84.97 88.93 89.89

40000 80.07 82.27 84.15 87.35 88.23 90.12

50000 79.33 81.94 84.9 85.51 87.47 90.76

60000 80.15 81.45 84.45 88.12 88.44 91.42

70000 78.2 81.9 86.59 88.29 89.99 93.37

80000 79.55 84.19 85.5 85.81 89.13 91.44

90000 80.65 81.99 85.03 87.39 89.41 90.77

100000 79.77 82.87 85.65 87.05 88.83 91.92

Precision score determines the reliability of a data mining

procedure. Higher precision refers higher reliability. DME-FP

achieved highest precision value of 93.37% with precision average

of 91.34% whereas MEFP achieved 89.99% of highest precision

with the average of 88.72%. Precision measurement values for

proposed method along with existing methods are given in Table 6

and compared in graph given as Figure 4.

Figure 4

Recall refers the fraction of successfully retrieved relevant items

and it is an important parameter in data mining. A good mining

procedure should score higher recall values. As per the readings,

DME-FP reached 92.8% recall score with 91.22% average

whereas other existing methods in comparison scored below

90% of recall value. Observed recall values are given in Table 7

and the comparison chart is given in Figure 5.

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

38

Table 7

Recall (%)

Records Apriori FP-Growth Eclat DFEM MEFP DME-FP

10000 80.46 83.45 86.13 88.13 89.8 92.8

20000 80.97 80.95 84.95 85.95 87.26 90.25

30000 79.68 83.91 85.83 85.06 88.29 90.2

40000 80.6 82.55 84.5 87.45 88.4 90.37

50000 79.44 82.07 85.69 85.31 87.93 91.24

60000 79.38 81.36 84.71 88.37 89.04 91.7

70000 78.24 81.88 86.52 87.84 89.48 92.8

80000 79.35 84.25 85.82 85.7 89.27 90.83

90000 80.41 81.11 84.82 86.53 89.55 90.25

100000 79.4 82.88 86.36 86.83 88.99 91.79

Figure 5

Processing time of a data mining procedure is also a parameter

that determines the quality. A good data mining procedure has

to produce results with a reasonable time. DME-FP consumed

2918mS of average processing time to process a data block.

Apriori consumes the least time of 2324mS average processing

time which is lesser than DME-FP. FP-Growth, Eclat, DFEM

and MEFP consumed 4072mS, 3677mS, 3548ms and 3306mS

respectively. While comparing other methods excluding Apriori,

DME-FP consumed lesser time. With the betterment in other

parameters the 594mS time delay can be compromised.

Complete processing time readings for all methods are given in

Table 8. A comparison graph of processing times is given in

Figure 6.

Average Processing Time (mS)

Records Apriori FP-Growth Eclat DFEM MEFP DME-FP

10000 2353 4096 3672 3549 3400 2987

20000 2230 4174 3618 3483 3295 2870

30000 2338 3984 3583 3575 3329 2819

40000 2370 4049 3773 3584 3251 2986

50000 2228 4003 3610 3518 3281 2991

60000 2308 4185 3591 3509 3374 3003

70000 2324 4147 3683 3519 3210 2969

80000 2369 4040 3756 3560 3219 2826

90000 2414 3989 3729 3557 3332 2870

100000 2306 4053 3752 3631 3366 2864

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

39

Table 8

Figure 6

Memory is one of the important computational resources. More

memory consumption affects the stability of data mining

procedures. While handling large number of item sets and

transaction history, consuming more memory will slow down

the process. DME-FP consumed 1844 Bytes to process a data

block. The nearest performance method MEFP consumed 2304

Bytes. Apriori consumed the least average memory of 1802

Bytes. Average memory consumption to process a data block by

all the methods are recorded in table 9. Memory comparison

chart is given in Figure 7.

Table 9

 Memory (B)

Records Apriori FP-Growth Eclat DFEM MEFP DME-FP

10000 1821 3586 2902 2817 2312 1846

20000 1781 3583 2905 2825 2307 1846

30000 1787 3611 2924 2848 2302 1832

40000 1807 3614 2909 2815 2302 1865

50000 1804 3607 2930 2815 2298 1821

60000 1792 3609 2915 2832 2329 1852

70000 1786 3598 2948 2810 2320 1820

80000 1821 3580 2927 2804 2311 1858

90000 1809 3586 2900 2826 2283 1865

100000 1808 3610 2900 2802 2284 1842

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

40

Figure 7

6. CONCLUSION
 Based on the experimental results DME-FP scored higher in

standard data mining parameters of accuracy, precision and

recall. The variation in consumption of computational resources

like processing time and memory is very lesser to achieve more

reliable association rules in proposed DME-FP. The introduction

of TPN and RPT results improved performance of proposed

DME-FP makes it is more suitable to use in modern data

analytical processes.

7. REFERENCES
[1] Chien Chiang Lin, Hsing-Hung Lin, Kun-Chih Huang.

TRIZ retrospect and prospect. Systems and Informatics

(ICSAI) IEEE November 2016

[2] Jeff Heaton. Comparing dataset characteristics that favor

the Apriori, Eclat or FP-Growth frequent itemset mining

algorithms. IEEE April 2016

[3] Arkan A.G.AL-Hamodi, Songfeng LU, Yahya E.A.AL-

Salhi. AN ENHANCED FREQUENT PATTERN

GROWTH BASED ON MAPREDUCE FOR MINING

ASSOCIATION RULES. International Journal of Data

Mining & Knowledge Management Process (IJDKP)

March 2016

[4] Dea Delvia Arifin, Shaufiah, Moch.Arif Bijaksana.

Enhancing Spam Detection on Mobile Phone Short

Message Service (SMS) Performance using FP-Growth

and Naive Bayes Classifier. Asia Pacific Conference on

Wireless and Mobile (APWiMob). IEEE 2016

[5] Chunkai Zhang, Xudong Zhang, Panbo Tian. An

Approximate Approach to Frequent Itemset Mining, Data

Science in Cyberspace (DSC). IEEE June 2017

[6] Wan Aezwani Bt Wan Abu Bakar, Zailani B.Abdullah,

Md.Yazid B.Md Saman, Masila Bt Abd Jalil, Mustafa B.

Man, Tutut Herawan, Abdul Razak Hamdan. Incremental-

Eclat Model: An Implementation via Benchmark Case

Study. Advances in Machine Learning and Signal

Processing. Springer June 2016

[7] Iona Sudheendran, Ganesh Kumar R. A Dynamic

Approach for Frequent Pattern Mining Using Database

Characteristics. International Journal for Research in

Applied Science & Engineering Technology (IJRASET)

MAY 2015

[8] Sagar Bhise1, Prof. Sweta Kale, Effieient Algorithms to

find Frequent Itemset Using Data Mining, International

Research Journal of Engineering and Technology (IRJET)

JUNE 2017

[9] Duo Liu, Yi Lin, Po-Chun Huang, Xiao Zhu, Liang Liang.

Durable and Energy Efficient In-Memory Frequent Pattern

Mining. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, IEEE March 2017

[10] Mukesh Bathre, Vivek Kumar Vaidya, Alok Sahelay.

Memory Efficient Frequent Pattern Mining using

Transposition of Database. International Journal of

Computer Engineering & Technology (IJCET). APRIL

2016

[11] Data Mining Algorithms In R/Frequent Pattern Mining/The

FPGrowthAlgorithm,https://en.wikibooks.org/wiki/Data_M

ining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP

-Growth_Algorithm

[12] Mahito Sugiyama, Karsten M. Borgwardt, Significant

Pattern Mining on Continuous Variables. Cornell

University Library 2017

[13] Ian H. Witten, Eibe Frank, Mark A. Hall, Christopher J.

Pal. Data Mining: Practical machine learning tools and

techniques. Fourth Edition

[14] Mahsa Salehi, Christopher Leckie, James C.Bezdek,

Tharshan Vaithianathan, Xuyun Zhang. Fast Memory

Efficient Local Outlier Detection in Data Streams, IEEE

Transactions on Knowledge and Data Engineering, IEEE

December 2016

[15] Souleymane Zida, Philippe Fournier-Viger, Jerry Chun-

Wei Lin, Cheng-Wei Wu, Vincent S. Tseng. EFIM: a fast

and memory efficient algorithm for high-utility itemset

mining. Knowledge and Information Systems. Springer

May,2017

IJCATM : www.ijcaonline.org

