
International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

11

Towards Solving Travelling Salesperson Problem using
Hybrid of Genetic Algorithm and Lin-Kernighan

Algorithm: A Comparative Evaluation with Neural
Network Model

Samuel A. Oluwadare

Computer Science Department
Federal University of

Technology Akure, Nigeria

Bosede A. Ogunsanmi

Computer Science Department
Federal University of

Technology Akure, Nigeria.

John C. Nwaiwu

Computer Science Department
Federal University of

Technology Akure, Nigeria

ABSTRACT

Travelling salesperson problem involves the sales person who

intends to find the minimum or shortest round trip that passes

through a finite set of cities, exactly once at minimum cost.

This problem belongs to the class of optimization problems

which is described as non-deterministic polynomial hard, that

is, it cannot be solved in exact polynomial time. Several

approaches have been employed in solving the problem, but

empirical results has shown that these approaches needs more

optimization in terms of run time and quality of getting the

optimum solution. Genetic algorithm combined with another

local search algorithm shows more efficient result could be

obtained. In this paper, hybridization of genetic algorithm

with a local search algorithm called Lin-Kernighan algorithm

is employed to provide efficient solution. A case study of

finding the optimal solution for a tour of state capitals in

Southern Nigeria is carried out. The model is implemented on

Intel Celeron 2GHz, 1GB RAM machine with JAVA

programming language and Wamp sever. The performance of

the proposed hybrid genetic algorithm-based model is

compared with Artificial Neural Network. The results showed

that the proposed model performs better than neural network

in terms of run-time and minimal tour distance.

General Terms

Routing, Optimization, Genetic Algorithm

Keywords

Travelling salesperson problem, Genetic algorithm, Lin-

Kernighan algorithm, Neural network, Optimal solution

1. INTRODUCTION
Travelling salesman problem (TSP) is well known non-

deterministic polynomial-time (NP-Hard) problem in

combinatorial optimization which requires the shortest path

through a tour through n cities, passing each once and returns

to the first visit. An NP-hard problem is the one that cannot be

solved exactly in polynomial time, that is, it does not have an

exact but approximate solution. TSP research finds its

application in different areas such as transportation problem,

logistic distribution problem, delivery order problem,

minimum spanning tree (MST) for communication network,

electricity network or water pipelining, and machine flow

shop scheduling [1]. Another variant of TSP is the Dynamic

traveling salesman problem (DTSP), which is a modified

version of the travelling salesman [2,3]. Here, a salesman

embarks on a trip starting from a city and after a complete

round comes back to his starting point whilst passing each city

once. Addition or removal of cities is allowed in DTSP [4].

This research dwells on standard TSP. The idea of TSP

problem is to find the shortest path of tour starting from a

given city, passing once an n city and returning back to the

city of take off. The major research problem lies in what order

should a traveling salesman tour the cities in order to achieve

an optimal minimum distance? In view of achieving TSP

solution had led to emergence of two categories of algorithms

namely, exact and approximate algorithms. The exact

algorithm has high computational time while approximate

method, based on heuristics, is more suitable. These set of

algorithms had found solutions in TSP [6, 7, 8, 9, 10].

For larger TSP, it is computationally costly to obtain optimal

solution using exact algorithms, thus the context for the

development and application of approximate algorithms or

heuristics is investigated in this paper. The study of

algorithms to achieve this practical goal has been carried out

by applying different methods from many areas such as

heuristic methods [12], simulated annealing [30], tabu search,

ant colony [13], [14], [15], particle swam optimization [16],

[17], fuzzy and neural network [18], [19]. However, it is

obvious that these techniques are grossly inefficient and

impracticable because of vast number of possible solutions to

the TSP, hence leading to the exploration of the advantages of

hybrid genetic algorithm and heuristics.

Genetic algorithm (GA) handles a population of possible

solutions to a particular problem. The set of possible solutions

are used as input to the genetic algorithm, each solution

represented as chromosome (which is just an abstract

representation of the solution). After encoding the solution

into a chromosome, a metric called the fitness function which

allows each solution candidates to be quantitatively evaluated

is applied to the chromosomes. This allows each solution to

be evaluated according to the fitness function. Usually, the

solution candidates are randomly generated, forming a pool of

population. In this population, the principle of “survival of the

fittest” is applied. That is, solution candidates with reasonable

fitness value are kept and allowed to reproduce. The result of

genetic algorithm depends on how well the genetic operators

(such as selection, crossover and mutation) are applied. If they

are not carefully used, the algorithm tends to get stuck at local

optimal resulting in inefficient solution. The edge-preserving

crossover operators in [20] outperform the operators that

preserve the relative order or the absolute position of the

cities. Hybrid genetic algorithm with stochastic hill climbing

(SHC) procedure in the mutation process showed that the

algorithm leads to good convergence as high as 99 percent

even for 500 cities TSP [21]. Solving TSP using genetic

algorithm mostly demands much time complexity when

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

12

compared with local search based algorithms. This can be

attributed to the computational cost accrued to population

based search in GAs. However, the major reason arises from

the fact that crossover operators require more computational

cost to generate an offspring solution than do local search

operators to evaluate a solution in the neighbourhood [22]. A

local search algorithm‟s ability to locate local optima with

high accuracy complements the ability of genetic algorithms

to capture a global view of the search space [23].

This paper presents a hybrid genetic algorithm-based model

that provides an optimal solution to the travelling salesperson

problem. The model incorporate Lin-Kernighan algorithm

into mutation process of the genetic algorithm to produce a

more efficient solution to the travelling salesperson problem.

The remainder of this paper is organized as follows. Section 2

provides a detailed literature review on travelling salesman

problem and hybrid genetic algorithm models. A proposed

hybrid genetic and Lin-Kernighan algorithm model is

presented in Section 3 while Section 4 shows the

implementation results and evaluation with neural network

model. The paper concludes in section 5 with notable findings

and future areas of research.

2. LITERATURE REVIEW

2.1 Traveling Salesman Problem

The travelling salesperson problem (TSP) is shown [5] with

full graph with weighted edges;

 EVG , (1)

that V is a set of n node or vertex (n = |V|) that indicates cities

and E ⊆ V ×V is a set of edges or directed edges. To each

edge (i, j) ∈ E the length of djj that is the distance between the

cities of I and j that is i, j ∈ V, is attributed. The travelling

salesperson problem can be naturally Symmetric or

asymmetric [11]. In the asymmetric travelling salesperson

problem (ATSP), the distance between the nodes of i and j is

dependent on edge scan direction, at least one edge (i, j) that

there is dij ≠ dji. In the symmetric travelling salesperson

problem, for all of the edges dij is equal to dji in E. The

solution of the travelling salesperson problem is to find

Hamiltonian cycle with the least length of graph. Hamiltonian

cycle is a traversal of a path in an undirected or directed graph

through its vertex exactly once. Such a graph is a traceable

graph. A combination of v vertices starting from {1,…,v}

such that the total length is a function of v is of minimal cost,

gives the optimal solution for solving traveling salesman

problem.

The adopted mathematical model for travelling salesperson

problem is as follows [24]:




n

ji

jiji xdMin
1,

,,
 (2)

Subject to the constraints:





n

j

ji nix
1

, ,...,3,2,1,1 (3)





n

i

ji njx
1

, ,...,3,2,1,1 (4)

 



Sji

ji nsnssx
,

, ,...,3,2,1,22,1 (5)

  jinjix ji  ,...,3,2,1,1,0, (6)

where





0

1
, jix

jix , is 1 if the salesperson passes through city i to j and is 0 if

otherwise. The distance between the city i and city j is given

by (di,j) and the route is given by (xi,j). The objective function

(2) seeks to minimize total distance covered in a tour.

Constraint (3) means that a salesperson can only depart from

the city i once, constraint (4) means that a salesperson can

only enter the city j once, (that is, (3) and (4) only give an

assurance that the salesperson visits each city once),

constraint (5) requires that no loop in any city subset should

be formed by the salesperson; and |S| means the number of

elements included in the set S. Constraints (6) impose binary

conditions on the variables

According to [25], for an n-node asymmetric TSP, there are

((n−1)!) possible solutions, one or more of which gives the

minimum cost. For an n-node symmetric TSP, there are

((n−1)!)/2 possible solutions with their reverse cyclic

permutations which have the same cost. In either case the

number of solutions becomes extremely large for even

moderately large n so that an exhaustive search is

impracticable. The paper also identified three main reasons

why TSP has attracted the attention of many researchers and

remains an active research area. These include modeling

ability of a great number of real-world problems by TSPs, the

NP-Complete problem nature of TSPs and intractability of

these problems.

2.2 Genetic Algorithm
Genetic Algorithm (GA) is a computational method designed

to simulate the evolution processes and natural selection in

organism [27], which follows the sequence as generating the

initial population, evaluation, selection, crossover, mutation,

and regeneration [6]. Genetic algorithm (GA) is an adaptive

search technique which is based on the principles and

mechanisms of natural selection and the survival of the fittest

idea of natural evolution. Its operation is an iterative process

on a fixed size population (or solution space). An individual

solution represents an encoding of the problem in a form that

is analogous to the chromosomes of biological genes (or

systems). A likely solution for an objective function is

represented by a chromosome. A chromosome is made up of a

string of genes and is usually represented as string of bits or as

arrays of integers or decimal numbers, with each digit again

representing some particular aspect of the solution [26]. A

fitness value is associated with each chromosome gotten from

estimating the objective function. A typical genetic algorithm

steps are shown in Algorithm 1 [21].

Algorithm 1

Step1: begin

Step2: k:=O;

Step3: P(k) := a set of initial feasible solutions;

Step4: evaluate structures in P(k);

Step5: while stopping-criterion ≠ yes do

Step6: begin

Step7: k:=k+l;

Step8: P(k) := select from P(k - 1);

Step9: alter structures in P(k) by

crossover;

Step10: alter structures in P(k) by mutation;

Step11: evaluate structures in P(k);

Step12: end

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

13

Step13: return the best solution;

Step14: end

The chromosome indirectly represents the solution of TSP in

a basic genetic algorithm. The processes to decode the

chromosome to the solution of TSP [6] are;

1. Indexes of unvisited cities are defined as a set called

allowed.

2. The i-th visited city is determined by the number of

gene 1 in the i-th groups of gene. If the number of

gene 1 is k, then the i-th visited city is k-th index in

allowed. If there is no gene 1 in the i-th group, then

the i-th visited city is the last index in allowed.

3. Once a city has been set visited, index of this city is

eliminated from allowed.

4. The last city is the last index remaining in allowed.

In practice, the population size of a genetic algorithm is finite,

which influences the sampling ability and as a result affects its

performance. A review on hybrid genetic algorithm shows

that incorporating a local search method within a genetic

algorithm can help to overcome most of the obstacles that

arise as a result of finite population sizes [34]. The study also

raises issues which may arise when combining genetic

algorithm with local search methods. A proper application of

the local search in GAs will ensure reasonable representation

of various search areas which in turn leads to reduction in

premature convergence of solutions.

2.3 Lin-Kernighan algorithm (LK)
The Lin-Kernighan algorithm belongs to the class of local

optimization algorithms [28]. The algorithm is specified in

terms of exchanges (or moves) that can convert one tour into

another. Given a feasible tour, the algorithm repeatedly

performs exchanges that reduce the length of the current tour,

until a tour is reached for which no exchange yields an

improvement. In an r-opt algorithm (where r exchanges is

performed to get a shorter tour) the value of r must be

specified in advance. This is a drawback because it is difficult

to know what value of r to use to achieve the best compromise

between running time and quality of solution. Lin and

Kernighan removed this drawback by introducing a powerful

variable r-opt algorithm which changes the value of r during

its execution [35]. At each iteration step, the algorithm

examines for ascending values of r, whether an interchange of

r links may result in a shorter tour. For a given exchange of r

links to be considered, a number of tests are carried out to

ascertain whether r or more link exchanges would be taken

into consideration. This test is continued until a stopping

criterion is met. When a condition is finally met, the algorithm

progresses to an incremental set of possible link exchanges.

The order of selection of exchanges is done in such a manner

that an optimal tour can be achieved at any point of the

exchange process. Detailed description is shown in section 3.

2.4 Neural Network
Neural network algorithms have been used to solve most

constraint imposed problems. A typical example is the

Hopfield network used for solving TSP. The Hopfield

network is a fully connected dynamic network in which the

output of the network which iterates to converge from an

arbitrary input state [29]. Figure 1 show the description of the

Hopfield network where n2 neurons (or cities) are chosen at

random. The primary goal of the network is to minimize the

energy function by finding a suitable connection weight. This

function is executed in a way whereby invalid tours through

cities are disallowed while the valid ones are allowed. Table 1

shows a distance matrix in n*n square matrix (for four cities)

whose major diagonal is zero [36]. The distance matrix shows

that the distance between city C1 and city C4 is 15 and net

distance between same cities is zero.

2.5 Related Work
A survey of genetic algorithms for the travelling salesperson

problem [20] studied exact algorithm, heuristic algorithm and

genetic algorithm in solving TSP. It shows that for any given

implementation, the quality of the final solution increases

with the size of the population. This result is also related to

the diversity found in large populations. Another notable

finding is that judicious parameter settings can also improve

the quality of the final solution (like population size,

maximum number of generations, crossover and mutation

rates). A hybrid mutation genetic algorithm (HMGA) [21]

which applies a stochastic hill climbing (SHC) procedure in

the mutation process shows that influence of the hybrid

mutation effect is quite significant since the HMGA abruptly

converges to 99% within only a few generations and attains

almost 100% convergence rate during the remaining

generations. In [31] a pheromone-based crossover operator for

GA is proposed. The pheromone-based crossover operator

utilizes both local information, including edge lengths and

adjacency relations, and global information stored as

pheromone trails. A local search procedure, 2-opt, is

integrated into the GA to accelerate convergence. When

compared to the incomplete optimization algorithm, the GA

seems to be slower when solving instances with 25 customers.

However, the computing time of their GA increases slowly

with the growth of problem size, and for instances with more

than 50 customers, the algorithm achieved optimal solution in

less time than the incomplete optimization algorithm. A

hybrid combination of genetic algorithm and ant colony is

used to solve DTSP [10] and TSP [6] respectively. A simple

technique for eliminating the redundant computations of GA

Fig. 1. Fully Connected Hopfield Network for TSP for 3

cities [29].

TABLE 1:

A TYPICAL DISTANCE MATRIX FOR 4 CITIES [29]

 #1 #2 #3 #4

C1 0 10 18 15

C2 10 0 13 26

C3 18 13 0 23

C4 15 26 23 0

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

14

and GA-based algorithms based on the notion of pattern

reduction was presented in [32]. The simulation results shows

that the proposed algorithm can effectively cut down the

computation time of GA and its hybrids with ACO and PSO,

especially in cases where the data sets are large. One plausible

shortcoming is that most of the genes compressed by PREGA

at a particular generation (133) or later might prevent PREGA

from finding better solutions at later generations.

In constructing a powerful GA, edge swapping (ES) with a

local search procedure is used to determine good

combinations of building blocks of parent solutions for

generating even better offspring solutions [22]. Another

important contribution is the development of ES in generating

even better offspring solutions from very high quality parent

solutions at the final phase of the GA. An interesting feature is

that a simple local search procedure was designed into ES to

determine good combinations of the edges of parents. They

demonstrates that the enhancements significantly improve the

performance of the GA. The reported optimum evaluation

time (for ten instances) for LK and GA algorithms show

lowest runtime of 381ms and 371ms respectively, while

highest runtime recorded are 975ms and 863ms respectively.

This work forms the major motivation of this paper. In this

paper a hybridization of genetic algorithm with Lin-

Kernighan algorithm in the mutation process to further

improve on the solution quality is proposed.

3. PROPOSED HYBRID MODEL
To model TSP solution involving genetic algorithm, two

important factors are to be considered:

1. how to represent each solution in the solution space.

2. the objective function and the fitness function.

The case study for this work comprises of state capitals in

Southern Nigeria, which covers three geopolitical zones in

Nigeria. The zones are South-South, South-East, and South-

West with seventeen state capitals altogether. The list of the

state capitals is given in Table 2 with the abbreviation. In the

case study, unique identification numbers (ranging from one

to seventeen) are used to represent each state capital in

alphabetical order as follows: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17), these numbers are arranged in different

order randomly to generate several tours. The tours that were

generated are then put together and termed the “initial

population.”

Table 3 is a chart that shows the distances between the various

cities; the first row and column contains the unique

identification numbers representing the cities. For

instance,”1”represents Abakaliki and “4” represents Akure, as

given in Table 2. The number in each cell is the distance

between city i and city j. The diagonal cell of the chart is

always zero because it contains the distance between a city

and itself. Some of the paths in this chart can also be

represented as a weighted graph as shown in figure 4.

Figure 2 shows the architecture of the system hybrid genetic

algorithm-based model for solving travelling salesperson‟s

problem. The architecture shows the different components

(functionality) of the system and how they interact. The initial

population generated randomly is referred to as the first

generation and they are stored in the database for subsequent

usage. Evaluation of fitness is performed on the stored

generation to obtain good individuals which will be

considered for reproduction. The poor or low rated individuals

are removed. Sequential constructive crossover (SCX) is

carried out on the selected individual to produce another

generation, which is referred to as the next generation

3.1 Genetic Representation and Coding
The method for representing solutions in genetic algorithm

varies from problem to problem but for TSP, solution is

typically represented by chromosome of length as the number

of nodes in the problem. Each gene of a chromosome takes a

label of node such that no node appears twice in the same

chromosome. There are mainly two representation methods

for representing tour in the TSP which includes adjacency

representation and path representation. The authors consider

path representation method which simply lists the label of

nodes. For example, let “1, 2, 3, 4, 5, 6, 7” be the labels of

nodes in a seven node instance, then a tour “1→ 4→ 3→ 5→

7→ 6→ 2→1” may be represented as (1, 4, 3, 5, 7, 6, 2).

TABLE 2

LIST OF STATE CAPITALS AND THEIR IDENTIFICATION NUMBERS.

ID Location Abbreviation

1 Abakaliki AL

2 Abeokuta AT

3 Ado AD

4 Akure AK

5 Asaba AS

6 Awka AW

7 Benin BE

8 Calabar CA

9 Enugu EN

10 Ibadan IB

11 Ikeja(Lagos) LA

12 Oshogbo OS

13 Owerri OW

14 Port Harcourt PH

15 Umuahia UM

16 Uyo UY

17 Yenagoa YE

Fig. 2. Proposed Hybrid Genetic Algorithm model architecture

[33]

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

15

3.2 Objective function and the fitness

function
The objective function and the associated constraints are

stated in the mathematical formulation of the problem in

equation (2), that is, to minimize tour subject to these

constraints (3 – 6). One way of defining the fitness function

for a minimization problem as stated in [25] is F(x) = 1/f(x),

where f(x) is the objective function which calculates the value

of tour represented by a chromosome. The hybrid model

flowchart description is shown in figure 3 while the weighted

graph representation of the travelling salesperson tour is

shown in figure 4 respectively.

3.3 Generate Initial Population
The first step in the algorithm is to randomly generate initial

population that is possible solutions to the problem, after

which the fitness of the individual solution generated is

evaluated using the fitness function F(x) = 1/f(x) where f(x)

calculates the value of the distance represented by each

chromosome. For example, in the case study the f(x) for one

of the chromosomes with the following path

(1,9,15,16,8,13,6,5,7,4,3,10,11,2,12,14,17) is 2,368Km, hence

F(x) = 1/ 2368. Best individuals are then stored as the first

generation. The next step is to select two parent chromosomes

for mating based on their fitness value.

3.4 Crossover Operation
Crossover operation is applied to the selected chromosomes.

The crossover operation used is called Sequential

Constructive operator (SCX) as illustrated in [25]. The

following steps are;

Algorithm 2:

Step 1: Start from the first node

Step 2: From the first node search both parent chromosomes

orderly and pick the node yet to be visited after „node x‟ in

each parent. If there is no „node x‟ in any of the parent, search

sequentially the nodes that follows and consider the first

„legitimate node‟ and go to step3.

Step 3: Suppose the „node a‟ and „node b‟ are found in first

and second parents respectively, then for selecting the next

node go to step 4.

Step 4: If Cxa<Cxb, then select „node a‟ otherwise, „node b‟ as

the next node and add it to partially constructed child (PCC)

chromosome. If the child is a complete chromosome, then

stop. Otherwise, rename the present node as „node x‟ and go

to step 2.

Sequential Crossover Operation

The SCX is illustrated by selecting a pair of chromosomes

from the kilometer chart of the case study given in table 3. Let

P1 and P2 be the selected chromosomes with values 6,332Km

and 5945Km respectively.

P1: (1, 5, 7, 3, 9, 13, 11, 17, 15, 10, 6, 12, 8, 4, 2, 16, 14)

P2: (1, 16, 2, 6, 4, 12, 8, 10, 14, 15, 11, 7, 13, 9, 5, 3, 17)

Table 3

A Kilometer Chart For State Capitals In Southern Nigeria.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0

2 632 0

3 487 271 0

4 482 256 47 0

5 360 416 317 256 0

6 153 486 347 308 52 0

7 316 345 210 171 130 187 0

8 146 733 594 555 299 276 422 0

9 93 560 333 382 127 77 250 263 0

10 650 141 192 178 406 463 309 712 522 0

11 622 86 310 283 430 487 333 736 546 121 0

12 541 194 118 104 358 414 269 663 473 116 233 0

13 183 605 403 364 109 93 231 208 143 561 541 477 0

14 238 589 490 451 205 189 322 216 232 608 588 563 97 0

15 136 568 429 391 135 112 258 165 124 587 567 503 58 115 0

16 195 651 512 473 217 194 340 95 207 670 650 585 127 135 83 0

17 300 534 435 396 241 218 267 309 269 553 533 508 128 116 186 226 0

Fig. 3. Weighted Graph representation for TSP tour [33]

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

16

3.5 Mutation Operation with Lin-

Kernighan algorithm
In order to vary the solution space, the authors adapt Lin-

Kernighan heuristic [37] for the mutation. The final step is to

test for minimum tour value. If the minimum tour value is

achieved, the result is displayed and the algorithm is

terminated else go back to step 2 of Figure 3 and repeat the

subsequent steps. The algorithm steps as illustrated in [37] are

shown as;

Algorithm 3

ImprovePath(P, depth,R)

Require: The path P = b →. . . →e, recursion depth depth and

the set of restricted vertices R.

If depth  then

Find the edge x→yP, x  b, x R such that it

maximizes the path gain

Gain(P, x →y).

else

Repeat the rest of the procedure for every edge x

→y x→yP, x  b, x R.

Conduct local search move: P RearrangePath(P, x

→y).

If GainIsAcceptable(P, x →y) then

Replace the edge x →y with x →e in P.

T = CloseUp(P).

If w(T) ≥w(T) then

Run T ←ImprovePath(P, depth + 1,R  {x}).

If w(T) < w (T) then

return T

else

Restore the path P.

return T

Note RearrangePath(P, x →y) removes an edge x→y from a

path P and adds the edge x →e, where P = b →. . . →x →y

→. . . →e. GainIsAcceptable(P, x →y) determines if the gain

of breaking a path P at an edge x →y is worth any further

effort. CloseUp(P) adds an edge to a path P to produce a

feasible tour. ImproveTour (T) is a tour improvement.

4. IMPLEMENTATION, RESULTS AND

DISCUSSION

4.1 Implementation Results
The practical implementation of the hybrid genetic algorithm-

based model in solving the travelling salesperson problem,

results and comparison with artificial neural network is

presented in this section. The algorithm is implemented with

Java programming language. The results obtained from the

implementation of the algorithm using different crossover

probabilities are given in Table 4. The table shows the number

of population and generations used for different crossover

probabilities while Table 5 contains the summation of the

total number of population for each crossover probability

used. The population refers to the numbers of individuals that

will participate in the crossover operation based on the

specified crossover probability in a particular generation.

Table 6 shows a sample table for optimum value of tour in a

generation with crossover probabilities used from a start

location to the destination location. The values in the last

column of the table represent the optimal minimum kilometer

distance for each tour from Abakaliki (AL). The start and

destination locations are abbreviated in two-letters. Figure 5

Table 4

Population And Generations For Crossover Probabilities.

Generations Number of populations with crossover

probabilities

0.2 0.4 0.6 0.8 1.0

1 217 241 200 300 197

2 308 200 200 281 206

3 300 230 306 281 301

4 287 300 307 373 301

5 189 200 251 200 284

6 319 261 222 271 257

7 281 306 232 182 226

8 207 281 298 203 217

9 273 343 300 306 216

10 202 281 252 202 291

 Table 5

Total Population For Each Crossover Probability

Crossover probability Total population

0.2 2583

0.4 2643

0.6 2568

0.8 2599

1.0 2496

 Table 6

Optimal Solution Tour For Abakaliki (Al) [33]

Start Dest. Cross.

prob.

Gen. Optimum Solution of the

Tour

AL EN 0.6 2 AL→YE→OW→P.H→BE

→AD→AK→CA→UM→A

S→UY→IB→LA→AT→O

S→AW→EN = 3738

AL IB 0.8 6 AL→YE→OW→UM→UY

→EN→AW→AS→BE→LA

→AD→AT→OS→AK→CA

→P.H→IB = 3626

AL LA 1.0 2 AL→AW→OW→UM→BE

→AD→OS→AK→AT→AS

→CA→EN→YE→P.H→U

Y→IB→LA = 3539

AL OS 0.8 5 AL→AW→OW→AS→AD

→LA→AT→IB→YE→CA

→AK→BE→P.H→UY→U

M→EN→OS = 3934

AL OW 0.8 8 AL→EN→YE→UM→BE→

AK→AW→CA→OS→AD

→LA→AT→IB→P.H→AS

→UY→OW = 4036

AL P.H 0.2 1 AL→AW→EN→BE→OS→

AD→AK→AT→LA→IB→

OW→CA→UY→AS→UM

→YE→PH = 2895

AL UM 0.4 5 AL→YE→P.H→AK→AD

→CA→OS→LA→AT→IB

→AS→BE→UY→EN→O

W→AW→UM = 4062

AL UY 0.6 6 AL→BE→AT→LA→AK→

AD→OS→IB→P.H→YE→

OW→AW→CA→AS→UM

→EN→UY = 3297

AL YE 0.8 6 AL→OW→EN→AW→UM

→BE→IB→OS→AK→AD

→AT→LA→AS→P.H→UY

→CA→YE = 2880
Dest. = Destination; Cross. Prob. = Crossover Probability; Gen. = Generation

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

17

depicts a chart showing a summary of total number of

population used for different crossover probabilities.

4.2 Performance Evaluation between

Hybrid GA and Neural Network
The comparison is done based on two major metrics which are

“minimum distance” and “run time”. The distance achieved in

a particular tour is obtained by the summation of all the

distance values between the cities involved in the tour. Hence,

the minimum distance achieved by a particular method is the

total distance of a tour with the lowest value. In the

comparison, ranges of cities chosen are between 4 and 8 cities

because of the computational complexity of ANN. In order to

show the efficiency of the HGA an experiment involving a

four- city tour and an eight- city tour from the case study is

carried out using the ANN and HGA. The result presented in

figure 6 shows that HGA is more efficient in terms of

minimum distance achieved. The run time (in milliseconds) is

the time for a particular method to complete its search. Figure

7 shows the results for the time taken for the both methods to

complete their execution. It is could be observed that HGA

performs better than ANN.

5. CONCLUSION

This paper explores the mutation operation process of a

genetic algorithm to achieve optimal solutions for the stated

Travelling Salesperson Problem. The TSP problem seems to

be simple conceptually but may be computationally explosive

to solve. Various approximate techniques had been applied to

the TSP. Achieving optimal solution in terms of minimum

tour distance and run time had always being motivation for

more heuristic approaches.

In this study, Lin-Kernighan algorithm is incorporated into

GA to perform the mutation operation. Also, sequential

constructive crossover (SCX) method is adopted and used to

perform the crossover operation. The HGA model developed

is tested with problems from the case study of 17 state capital

cities in Southern Nigeria. The HGA model is also compared

with ANN model and the result shows that the proposed HGA

performed better than ANN in terms of minimum tour

distance and run time.

Future scope of research lies in the study of large TSP using

other hybrid heuristics. Also optimization of initial population

selection and crossover operation processes need to be

investigated.

6. ACKNOWLEDGMENTS
The authors wish to acknowledge the staff and postgraduate

students of Computer Science Department, Federal University

of Technology Akure, Nigeria for their various support and

suggestions during the duration of this research

7. REFERENCES
[1] Corwin, B. D. and Esogbue, A. O., 1974. Two Machine

flow shop scheduling problems with sequence dependent

setup times: a dynamic programming approach, J. Naval

Research Logistics. Vol. 21, pp. 515-524.

[2] Psaraftis, H. N., 1998. Dynamic vehicle routing

problems, In: B. L. Golden, A. A. Assad, (eds.) Vehicle

Routing: Methods and Studies, Elsevier, Amsterdam, pp.

223–248.

[3] Li, C. Yang, M. and Kang, L. 2006. A New Approach to

Solving Dynamic Traveling Salesperson Problems. In:

T.-D. Wang, X. Li, S.-H. Chen, X. Wang, H. Abbass, H.

Iba, G. Chen, X. Yao, (eds.) SEAL 2006. LNCS,

Springer, Heidelberg, vol. 4247, pp. 236–243.

[4] Guntsch, M. Middendorf, M. and Schmeck, H. 2001. An

ant colony optimization approach to dynamic TSP. In:

Lee Spector et al., editor, Proceedings of the Genetic and

Evolutionary Computation, Conference (GECCO-2001),

San Francisco, California, USA, 7-11 July 2001. Morgan

Kaufmann, pp. 860–867.

Fig. 5: A graph of total number of population used for

different crossover probabilities

Fig. 6: Comparison of minimum distance obtained for four

tours using ANN and HGA

1238

816

1094

911

1045

704 696
760

0

200

400

600

800

1000

1200

1400

Asaba-Uyo Owerri-

Akure

Oshogbo-

Enugu

Ado-

Enugu

D
is

ta
n

ce
 (

K
m

)

Tour

ANN

HGA

Fig. 7. Comparison of based on runtime for four tours

using ANN and HGA

11
53

111

180

381

580

8
31

84 107
121 125

0

100

200

300

400

500

600

700

3 4 5 6 7 8

R
u

n
ti

m
e

(m
il

li
se

co
n

d
s)

Number of Cities

ANN

HGA

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

18

[5] Tabatabaee, H. 2015. Solving the traveling salesperson

problem using genetic algorithms with the new

evaluation function, Bulletin of Environment,

Pharmacology and Life Sciences, Vol. 4, No. 11, pp.

124-131.

[6] Zukhri, Z. and Paputungan, I. V. 2013. A Hybrid

Optimization Algorithm based on Genetic Algorithm and

Ant Colony Optimization, International Journal of

Artificial Intelligence & Applications (IJAIA), Vol. 4,

No. 5, pp. 63 - 75, DOI : 10.5121/ijaia.2013.4505

[7] Jingui, L. Ning, F. Dinghong, S. and Congyan, L. 2007.

An Improved Immune-Genetic Algorithm for the TSP In

Proc. IEEE Int. Conf. Natural Computation.

[8] Wang, S. and Zhao, A. 2009. An Improved Hybrid

Genetic Algorithm for Traveling Salesperson Problem,

In IEEE Proc. Int. Conf. Computational Intelligence and

Software Engineering.

[9] Rodriguez, M. A. V. Gutierrez-Gil, R. Avila-Roman, J.

M. Sanchez-Perez, J. M. and Gomez-Pulido, J. A. 2005.

Genetic Algorithms Using Paralelism and FPGAs: The

TSP as Case Study, in IEEE Proc. Int. Conf. Parallel

Processing Workshops.

[10] Gharehchopogh, F. S. Maleki, I. and Farahmandian, M.

2012. New Approach for Solving Dynamic Travelling

Salesman Problem with Hybrid Genetic Algorithms and

Ant Colony Optimization, International Journal of

Computer Applications, Vol. 53, No. 1, pp. 0975 – 8887.

[11] Li-Ying, W. Jie, Z. and Hua, L. 2007. An Improved

Genetic Algorithm for TSP, In IEEE Proc. Int. Conf.

Machine Learning and Cybernetics.

[12] Sze, S. N. 2004. Study on Genetic Algorithms and

Heuristic Method for Solving Traveling Salesman

Problem, M.S. dissertation, Faculty of Science,

Universiti Teknologi Malaysia, Johor, Malaysia.

[13] Wang, S. and Zhao, A. 2009. An Improved Hybrid

Genetic Algorithm for Traveling Salesperson Problem,

In IEEE Proc. Int. Conf. Computational Intelligence and

Software Engineering.

[14] Yingzi, W. Yulan, H. and Kanfeng, G. 2007. Parallel

Search Strategies for TSP‟s using a Greedy Genetic

Algorithm, in IEEE Proc. Int. Conf. Natural

Computation.

[15] Zhenchao, W. Haibin, D. and Xiangyin, Z. 2009. An

Improved Greedy Genetic Algorithm for Solving TSP, in

IEEE Proc. Int. Conf. Natural Computation.

[16] Yan, X. Zhang, C. Luo, W. Li, W. Chen, W. and Liu, H.

2012. Solve Traveling Salesman Problem Using Particle

Swarm Optimization Algorithm, IJCSI International

Journal of Computer Science Issues, Vol. 9, Issue 6, No.

2, pp. 264-271.

[17] Zhang, C. Sun, J. Wang, Y. and Yang, Q. 2007. An

Improved Discrete Particle Swarm Optimization

Algorithm for TSP, Proceedings of Web Intelligence/IAT

Workshops, pp. 35-38.

[18] Rajasekaran, S. and VijayalakshmiPai, G. A. 2010.

Neural Networks, Fuzzy Logic and Genetic algorithms

Synthesis and applications, PHI Learning private

Limited, New Delhi.

[19] Alireza, A. A. Naserasadi, A. and Zeinab, A. A. 2011. A

New Hybrid Algorithm for Traveler Salesman Problem

based on Genetic Algorithms and Artificial Neural

Networks, International Journal of Computer

Applications, Volume 24, No.5, pp. 0975 – 8887.

[20] Potvin, J-Y. 1996. Genetic algorithms for the traveling

salesman problem, Annals of Operations Research, Vol.

63, pp. 339-370.

[21] Katayama, K. and Sakamoto, H. 2000. The Efficiency of

Hybrid Mutation Genetic Algorithm for the Travelling

Salesman Problem, Mathematical and Computer

Modeling, Vol. 31, pp. 197-203.

[22] Liu, S. 2014. A Powerful Genetic Algorithm for

Traveling Salesman Problem, Proceedings of the course

Principles of Artificial Intelligence, Sun Yat-sen

University, Guangzhou, China, pp. 1 – 5.

[23] El-Mihoub, T. A. Hopgood, A. A. Nolle, L. and

Battersby, A. 2006. Hybrid Genetic Algorithms:

A Review, Engineering Letters, 13:2, EL_13_2_11

(Advance online publication).

[24] Donald, D. 2010. Travelling Salesman Problem, Theory

and Applications, InTech,Janeza Trdine 9, 51000

Rijeka, Croatia.

[25] Zakir, H. A. 2011. Genetic algorithm for the travelling

salesman problem using sequential constructive

crossover operator, International Journal of Biometrics

and Bioinformatics (IJBB), Vol.3, Issue.6, pp. 96-105.

[26] Oluwadare, S. A. 2009. A Scheduling Algorithm for

enhancing operating system support for high-speed

multimedia systems, Ph.D. Thesis, Dept. Comp. Sci.,

Federal University of Technology, Akure, Nigeria.

[27] Raza, Z. and Vidyarthi, D. P. 2009. A computational grid

scheduling model to minimize turnaround using modified

GA, International Journal of Artificial Intelligence, Vol.

3, No. A9, pp. 86-106.

[28] Johnson, D. S. and McGeoch, L. A. 1995. The Traveling

Salesman Problem: A Case Study in Local

Optimization, Department of Mathematics and Computer

Science, Amherst College, Amherst, MA 01002.

[29] Graupe D. and Gandhi, R. 2001. Traveling Salesman‟s

Problem Solution using Hopfield Neural Network, Final

year Project Report, ECE 559.

[30] Laarhoven, P. V. and Aarts, E. H. L. 1987. Simulated

Annealing: Theory and Applications, KluwerAcademic.

[31] Zhao, F. G. Sun, J. S. Li, S. J. and Liu, M. W. 2009. A

Hybrid Genetic Algorithm for the Travelling Salesman

Problem with Pickup and Delivery, International Journal

of Automation and Computing, Vol. 6, No.1, pp. 97-102,

DOI: 10.1007/s11633-009-0097-4.

[32] Tsai, C-W. Tseng, S-P. Chiang, M-C. Yang, C-S. and

Hong, T-P. 2014. A High-Performance Genetic

Algorithm: Using Traveling Salesman Problem as a

Case, Hindawi Publishing Corporation, The Scientific

World Journal, Vol. 2014, Article ID 178621, pp. 1-14,

http://dx.doi.org/10.1155/2014/178621.

[33] Ogunsanmi, B. A. 2015. Hybrid Genetic Algorithm-

Based Model for Solving Travelling Salesperson

Problem, M.Tech Thesis, Dept. Comp. Sci., Federal

University of Technology, Akure, Nigeria, unpublished.

International Journal of Computer Applications (0975 – 8887)
Volume 179 – No.7, December 2017

19

[34] El-Mihoub, T. A. Hopgood, A. A. Nolle, L. and

Battersby, A. 2006. Hybrid Genetic Algorithms: A

Review, Engineering Letters, 13:2, EL_13_2_11

(Advance online publication)

[35] Helsgaun, K. 1998. An Effective Implementation of Lin-

Kernighan Traveling Salesman Heuristic, A Report,

Dept. of Comp. Sci., Roskilde Uni., Roskilde,

Denmark,http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.25.4908&rep=rep1&type=pdf.

[36] Saranya, M. and Dhinakaran, S. 2013. Implementation of

Traveling Salesman‟s Problem Using Neural Network,

International Journal of Computer & Organization

Trends, Vol. 3, Issue 4, pp. 161-164, ISSN: 2249-2593.

[37] Karapetyan, D. 2010. Design, Evaluation and Analysis of

Combinatorial Optimization Heuristic Algorithms, Ph.D

Thesis, Dept. Comp. Sci., Royal Holloway College

University of London.

IJCATM : www.ijcaonline.org

