
International Journal of Computer Applications (0975 – 8887) 
Volume 179 – No.8, December 2017 

 

15 

A Novel Exact Heuristic Graph Coloring Algorithm based 

on Finding Independent Set

Sukrati Agrawal 

M.Tech. Scholar CS Dept. 
MIST, Indore (M.P.), India 

 

 

Vishal Chhabra 

Asst. Prof. CS Dept. 
MIST, Indore (M.P.), India 

 
 
 

ABSTRACT 
Vertex coloring is a graph coloring technique which has a 

wide application area to provide solution for many real world 

problems. The high computational complexity of graph 

coloring algorithm led the development of exact heuristic 

algorithm which can be executed in optimal time. This paper 

explores some existing graph coloring algorithms to propose 

taxonomy of exact graph coloring algorithm which is capable 

to execute large graphs also. This paper presented 

experimental result on DIMACS graph instances.    

Keywords 

Graph Coloring, independent set, exact algorithm, 

approximate algorithm, sequential algorithm and parallel 

algorithms. 

1. INTRODUCTION 
A graph G (V, E) is a set of vertices V and a set of edges E. 

The edges are unordered pairs of the form (i, j) where i, j ∈ 

V. Two vertices i and j are said to be adjacent if and only if 

(i, j) ∈ E and non-adjacent otherwise.  

The graph coloring problem (GCP) - Graph coloring (mainly 

vertex coloring) of a graph is an assignment of colors to the 

vertices such that no two adjacent vertices are assigned the 

same color. Alternatively, a coloring is a partition of the 

vertex set into a collection of vertex-disjoint independent 

sets. Each independent set is called a color class. The GCP is 

then to find a vertex coloring for a graph using the minimum 

number of possible colors.  

There are numerous applications of graph coloring  like time 

tabling and scheduling [1], register allocation [2], frequency 

assignments [3], crow management, air traffic management 

[4] etc. The graph coloring begins with coloring the map. In 

1852 Francis Guthrie, while trying to color the map of 

countries of England, noticed that four colors are sufficed. 

Subsequently, he proposed that 4 colors are enough to color 

any map. Successive efforts made to prove Guthrie's 4-color 

inference led to the development of much of graph coloring. 

Later on this map coloring is also known as face coloring.  

2. EXISTING ALGORITHMS 
Graph coloring has wide scope of problem solving 

capabilities. So many researchers and mathematicians tried to 

discover different algorithms. On the basis of problem 

solving capabilities graph coloring algorithms are divided 

into two categories, one is exact and another one is 

approximate algorithm [5]. 

2.1 Exact and Approximate Algorithm 
Finding optimum solution through exact algorithm is a NP-

hard problem. Exact algorithms give very precious results. 

But there are certain issues related to exact algorithms are 

observed. The main problem with the exact algorithms is that 

most of the exact algorithms are able to execute small size 

graphs which have less than 100 vertices [6] [7].  

Approximate algorithms [5] are algorithms used to find 

approximate solutions for optimization problems. Heuristic 

parallel algorithms are the approximate algorithms which 

color the vertices of the graph in parallel to reduce the 

coloring time and also reduce the number of colors used in 

coloring of graph. Solution given by the approximate 

algorithms is not surely precious. But it has been observed 

that approximate algorithms are able to provide solution for 

large graphs having more than 100 vertices. 

2.2 Sequential and Parallel Algorithms  
On the basis of execution behavior algorithms are also 

divided in to sequential and parallel [8]. Sequential 

algorithms use to color vertices with minimum colors. These 

algorithms are much efficient for small size graphs but take 

time to execute large graphs. There are certain algorithms 

which uses sequential method to solve the graph coloring 

such as sequential greedy algorithm [9], first fit [10], largest-

degree-first-ordering [11], incidence-degree-ordering [12], 

and saturation-degree-ordering [13]. 

Parallel computing is an effective way to find a solution in 

optimal time complexity for any algorithm. Hence in the 

same way graph coloring researchers are also using parallel 

computing to solve GCP. There are some sequential 

algorithms like largest- degree-first algorithm [11] and the 

smallest-degree-last algorithm [14] which converted in to 

parallel algorithms to achieve better performance.  

3. PROBLEM IDENTIFICATION  
By reviewing of literatures related to the graph coloring, it 

has been found that most of the researcher’s focus is to find 

better chromatic number to solve vertex coloring problem i.e. 

finding optimum chromatic number is always a primary 

objective for researchers. Exact algorithm is more reliable for 

solving GCP. Because result generated by exact algorithms 

are more accurate and optimum, but the major problem with 

the existing exact algorithms that they are not suitable to 

execute large graphs. So it is a real challenge to find such an 

algorithm, which can execute large graphs in finite time. 

 

4. PROPOSED SOLUTION  
This paper presents an exact graph coloring algorithm to 

solve GCP, which can find coloring sequence and feasible 

chromatic number for large graphs also. Proposed algorithm 

is based on theory of finding independent set, because all the 

vertices of any independent set can be colored with same 

color. Proposed algorithm uses iterative approach to find 

maximal independent sets to assign colors to the vertices. 



International Journal of Computer Applications (0975 – 8887) 
Volume 179 – No.8, December 2017 

 

16 

4.1 Maximal Independent Set 
In graph theory, an independent set is a set of vertices in a 

graph such that no two vertices are adjacent from given set. 

That is, it is a set V of vertices such that for every two 

vertices in V, there is no dedicated edge connecting the two 

vertices. This is also known as stable set. If this set is 

maximal i.e. contain maximal vertices as compared to other 

sets then it is known as maximal independent set. 

4.2 Proposed Algorithm Flow Chart 
This paper presents an efficient way of finding independent 

set from a given graph. The algorithm takes graph as an input 

and generates chromatic no. as an output. The algorithm 

works in iteration followed by multiple sub iterations. In 

external iteration the vertex with the maximum degree is 

selected to process first then this vertex further process by the 

sub iterations. The algorithm can be better understood by the 

flow chart given in figure 1. 

4.2.1 Step1 
Initially the data set has been initialized for which algorithm 

reads the graph data such as number of vertices, number of 

edges and edges information. This data set obtained from the 

DIMACS graph instance, which is available in .col format. 

Then algorithm creates an edge set through read edges 

information. One empty edge cover vertex set is also created 

to keep the record of vertex information. 

4.2.2 Step 2  

In this step algorithm checks the availability of vertex in 

vertex set. This condition is checked in all iteration whenever 

process of finding any independent set has been started. If all 

vertices are removed from vertex set then algorithm will 

terminate, otherwise enter into next step. 

4.2.3 Step 3 
 In this step first of all copy of vertex set and edge set 

generated in step 1 is created in order to keep the record of 

original graph. Edge cover set is also need to clear for this 

step. After that degree of all vertices available in vertex set is 

calculated.  

4.2.4 Step 4 

In this step copy of edge set created in previous state is 

checked, that edge set is empty or not. Empty edge set shows 

that internal iterations of main iteration (used to find 

independent set) is over and control goes to the step 6. But if 

this edge set contain any edge shows internal iterations are 

not finished and controls transfer to step 5. 

4.2.5 Step 5 
 In this step algorithm finds the vertex having maximum 

degree from vertex set (calculated in step 3). After finding 

maximum degree vertex algorithm add this vertex to edge 

cover set and delete it  from vertex set copy (created in step 

3). Algorithm also deletes all the edges connected this vertex 

from the copy of edge set (created in step 3). Finally 

maximum degree vertex is removed from vertex degree set. 

Then execution control go to step 4 and repeat step 4 and step 

5 till edge set is not empty. 

4.2.6 Step 6 
This step assigns the same color to all the vertices present in 

a single independent set generated by algorithm. In each 

iteration algorithm take a new color to assign new 

independent set. After assigning the color to independent set 

controls goes to step 2 and whole iteration get repeated till all 

vertices is not removed from the edge set. 

 

Fig 1: Algorithm Flow Chart 

5. EXPERIMENTAL RESULTS AND 

RESULT ANALYSIS  

5.1 Development Environment 
Proposed algorithm is developed in Java Programming 

Language for experiments. Some important concepts like file 

handling and collection framework is used to implement the 

algorithm. Due to the platform independence of java 

algorithm is can be execute on different operating systems 

like Windows and Linux. 

Start 

3. Find degree of all 

vertices  

2. Is graph 

Empty? 

4. Whether 

all edges 

removed 

from graph? 

5. Find maximum degree vertex 

and update graph by removing 

highest degree vertex and related 

edges 

6. Assign color to independent set and 

remove vertices and connected edges 

from graph 

Stop 
Yes 

No 

Yes 

No 

1. Initialize data set 



International Journal of Computer Applications (0975 – 8887) 
Volume 179 – No.8, December 2017 

 

17 

5.2 Data Set 
The Center for Discrete Mathematics and Theoretical 

Computer Science (DIMACS) is collaboration between 

Rutgers University, Princeton University, and the research 

firms AT&T, Bell Labs, Applied Communication Sciences, 

and NEC. It is founded to support research activity and 

provide different open source data sets for research. 

DIMACS also provides the different applications and 

randomly generated graph data sets for graph coloring. Most 

of the researchers use these data sources for their research. 

So to experiment the proposed algorithm graph instances 

provided by DIMACS is used [15]. 

5.3  Experimental Results 
To execute the proposed algorithm Intel Pentium Dual CPU 

G640 @ 2.80 GHz processor and 2.00 GB RAM computer 

system is used. Table 1 shows the experimental results of 

proposed algorithm. Table 1 contain following information 

from first to sixth column serial number (Sr. No.), name of 

graph Instance (Instance), number of vertices in graph (V), 

number of edges in graph (E), chromatic number generated 

by proposed algorithm (K) and execution time in seconds 

(Time (s)). 

Table 1: Experimental results of the proposed algorithm 

Sr. No. Instance V E K Time (s) 

1 myciel3 11 20 4 0.031 

2 GEOM20 20 40 5 0.031 

3 myciel4 23 71 5 0.047 

4 queen5_5 25 320 7 0.094 

5 1-FullIns_3 30 100 4 0.047 

6 GEOM30 30 80 6 0.044 

7 GEOM30a 30 111 7 0.046 

8 GEOM30b 30 111 6 0.062 

9 queen6_6 36 580 10 0.171 

10 2-Insertions_3 37 72 4 0.042 

11 GEOM40 40 118 6 0.078 

12 GEOM40b 40 197 7 0.094 

13 myciel5 47 236 6 0.094 

14 queen7_7 49 952 12 0.25 

15 GEOM50 50 177 6 0.081 

16 GEOM50b 50 299 10 0.142 

17 R50_1g 50 108 5 0.065 

18 R50_1gb 50 108 5 0.075 

19 R50_5g 50 612 15 0.218 

20 R50_5gb 50 612 15 0.218 

21 R50_9g 50 1092 25 0.391 

22 R50_9gb 50 1092 25 0.391 

23 2-FullIns_3 52 201 5 0.078 

24 3-Insertions_3 56 110 4 0.062 

25 GEOM60 60 245 7 0.125 

26 GEOM60b 60 426 12 0.203 

27 queen8_8 64 1456 14 0.329 

28 1-Insertions_4 67 232 5 0.094 

29 GEOM70 70 337 9 0.174 

30 GEOM70a 70 529 12 0.25 

31 GEOM70b 70 558 12 0.172 

32 R75_1g 70 251 6 0.125 

33 R75_1gb 70 251 6 0.125 

34 Huck 74 602 11 0.218 

35 R75_5g 75 1407 16 0.391 

36 R75_5gb 75 1407 16 0.359 

37 R75_9g 75 2513 39 0.703 

38 R75_9gb 75 2513 39 0.734 

39 4-Insertions_3 79 156 4 0.094 

40 3-FullIns_3 80 346 6 0.125 

41 GEOM80 80 429 8 0.206 

42 Jean 80 508 10 0.196 

43 queen9_9 81 2112 15 0.375 

44 David 87 812 12 0.235 

45 mug88_1 88 146 5 0.109 

46 mug88_25 88 146 4 0.109 

47 GEOM90 90 531 10 0.246 

48 GEOM90a 90 879 16 0.36 

49 GEOM90b 90 950 18 0.36 

50 1-FullIns_4 93 593 5 0.172 

51 myciel6 95 755 7 0.219 

52 queen8_12 96 2736 15 0.516 

53 GEOM100 100 647 10 0.282 

54 GEOM100a 100 1092 16 0.407 

55 mug100_1 100 166 4 0.125 

56 mug100_25 100 166 4 0.125 

57 queen10_10 100 2940 17 0.5 

58 R100_1g 100 509 8 0.235 

59 R100_5g 100 2456 22 0.578 

60 R100_9g 100 4438 44 1.08 

61 R100_9gb 100 4438 44 1.063 

62 GEOM110 110 748 11 0.313 

63 4-FullIns_3 114 541 8 0.187 

64 games120 120 1276 9 0.344 

65 GEOM120 120 893 11 0.375 

66 queen11_11 121 3960 18 0.703 

67 DSJC125.1 125 736 8 0.284 

68 DSJC125.5 125 3891 25 0.797 

69 DSJC125.9 125 6961 56 1.739 



International Journal of Computer Applications (0975 – 8887) 
Volume 179 – No.8, December 2017 

 

18 

70 miles1000 128 6432 51 1.406 

71 miles1500 128 10396 81 2.588 

72 miles250 128 774 10 0.297 

73 miles500 128 2340 26 0.531 

74 miles750 128 4226 39 0.953 

75 Anna 138 986 12 0.281 

76 queen12_12 144 5192 19 0.859 

77 2-Insertions_4 149 541 5 0.203 

78 5-FullIns_3 154 792 8 0.25 

79 queen13_13 169 6656 20 1.046 

80 mulsol.i.3 184 3916 31 0.719 

81 mulsol.i.4 185 3946 31 0.715 

82 mulsol.i.5 186 3973 31 0.672 

83 mulsol.i.2 188 3885 31 0.672 

84 myciel7 191 2360 10 0.422 

85 queen14_14 196 8372 21 1.375 

86 mulsol.i.1 197 3925 49 1.047 

87 1-Insertions_5 202 1227 6 0.312 

88 zeroin.i.3 206 3540 32 0.657 

89 zeroin.i.1 211 4100 51 1.04 

90 zeroin.i.2 211 3541 32 0.641 

91 2-FullIns_4 212 1621 6 0.344 

92 queen15_15 225 10360 25 1.86 

93 DSJC250.1 250 3218 12 0.735 

94 DSJC250.5 250 15668 42 3.578 

95 DSJC250.9 250 27897 94 13.932 

96 r250.5 250 14849 101 7.327 

97 queen16_16 256 12640 27 2.221 

98 3-Insertions_4 281 1046 5 0.312 

99 1-FullIns_5 282 3247 6 0.469 

100 flat300_28_0 300 21695 45 5.954 

 

6.  CONCLUSION 
This paper presents algorithm is to solve vertex coloring 

problems which can be executed on different types of 

application data i.e. algorithm supports various application 

problems. The algorithm is successfully executed up to 300 

vertices and gives results in finite time. Execution success 

rate is also high for proposed algorithm. In some cases it is 

found that proposed algorithm is not giving optimum 

chromatic number, so in future algorithm can be update to 

find optimum chromatic number for all types of graphs.  

7.  REFERENCES 
[1] Hussin B., Basari A. S. H., Shibghatullah A. S. and 

Asmai S. A., Exam Timetabling Using Graph Colouring 

Approach, In Proc.  IEEE Conference on Open Systems, 

Langkawi, 25-28 September (2011), p.139-144. 

[2] Chaitin G. J., Register Allocation & Spilling via Graph 

Coloring, In Proc. SIGPLAN '82 Proceedings of the 

1982 SIGPLAN symposium on Compiler construction, 

June (1982), p.98-105. 

[3] S. Ahmed, "Applications of Graph Coloring in Modern 

Computer Science", International Journal of Computer 

and Information Technology, 2012, Vol. 3, Issue 2, pp. 

1-7. 

[4] Barnier N. and Brisset P., “Graph Coloring for Air 

Traffic Flow Management”, Annals of Operations 

Research, 130 (1-4), 163–178, August (2004). 

[5] A.  Gupta and H. Patidar, “A Survey on Heuristic Graph 

Coloring Algorithm”, International Journal for 

Scientific Research & Development Vol. 4, Issue 04, 

2016, pp. 297-301. 

[6] Mahmoudia S., Lotfi S., "Modified Cuckoo 

Optimization Algorithm (MCOA) to Solve Graph 

Coloring Problem", Applied Soft Computing, 33, 48-64 

(2015). 

[7] Torkestani J. A., Meybodi M.R., “A cellular learning 

automata-based algorithm for solving the vertex 

coloring problem”, Expert Systems with Applications, 

38, 9237–9247, (2011). 

[8] Patidar H., Chakrabarti P., “ Sequential and Parallel 

Approaches in Context to Graph Coloring Problems - A 

Survey”,  International Journal of Computer Systems, 

Volume 03– Issue 05, May, 201, pp. 403-406. 

[9] Allwright JR, Bordawekar R, Codington PD, Dincer K, 

Martin CL,“A comparison of parallel graph coloring 

algorithms Technical” Report SCCS-666, Northeast 

Parallel Architecture Center, Syracuse University, 1995. 

[10] Dr. Hussein Al-Omari and KhairEddinSabri: “New 

Graph Coloring Algorithms”, American Journal of 

Mathematics and Statistics 2 (4): 739-741, 2006ISSN 

1549-3636, March 2006. 

[11] C. Avanthay, A. Hertz, N. Zufferey, “A variable 

neighborhood search for graph coloring”, European 

Journal of Operational Research 151 (2) (2003) 379–

388. 

[12] E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, R. 

Qu, “A graph-based hyper heuristic for timetabling 

problems”, European Journal of Operational Research 

176 (2007) 177–192. 

[13] E. Falkenauer, “A hybrid grouping genetic algorithm for 

been packing”, Journal of Heuristics 2 (1) (1996) 5–30. 

[14] D. W. Matula and L. L. Beck. “Smallest-last ordering 

and clustering and graph coloring algorithms”, JACM, 

1983. 

[15] DIMACS Graph Instances, available at 

“http://mat.gsia.cmu.edu/COLOR/instances.html”

 

IJCATM : www.ijcaonline.org 


