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ABSTRACT 

Multimedia applications are present in most mobile hand-held 

devices.H.264 is an emerging video coding standard, which 

aims at compressing high-quality video contents at low-bit 

rates. While the new encoding and decoding processes are 

similar to many previous standards, the new standard includes 

a number of new features and thus requires much more 

computation than most existing standards do. The complexity 

of H.264 standard poses a large amount of challenges to 

implementing the encoder/decoder in real-time requiring large 

amount of processing resources. This paper presents the 

design and analysis of the H.264 decoder implemented on a 

heterogeneous architecture (multi-CPUs/multi-GPUs). A 

model-driven approach is adopted by using the standard 

MARTE profile of UML. Our approach is based on hybrid 

partitioning that combines both functional and data 

partitioning which is applied to find the most suitable 

processors (CPU or GPU) regarding the execution time. We 

claim that our approach allows giving a better performance, 

which is crucial when implemented in modern complex 

systems. 
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1. INTRODUCTION 
In recent years, the performance improvement of Graphics 

Processing Unit (GPU) is remarkable and GPUs are becoming 

attractive as accelerators for heavy tasks. GPUs are now 

commonly used as co-processors in many embedded systems 

to accelerate general-purpose applications. They are 

particularly capable of executing data-parallel applications, 

due to their highly multithreaded architecture and high-

bandwidth memory. Various embedded system domains can 

benefit high performance and better energy efficiency from 

utilizing GPUs. For example, GPUs can efficiently perform 

matrix operations such as factorization on large data sets and 

multidimensional FFTs and convolutions. Such operations are 

often seen in many embedded applications including signal 

processing, imaging and video processing. By leveraging new 

programming models, such as CUDA [1] and OpenCL [2], 

programmers can effectively develop highly data-parallel 

kernels to execute such applications on GPUs. 

By integrating heterogeneous processing elements with 

different performance characteristics in the same system, 

heterogeneous CPU/GPU architectures are expected to 

provide more flexibility for better performance compared to 

homogeneous systems. Execution time and energy 

consumption are imperative performance metric that needs to 

be optimized in most embedded systems. In order to minimize 

execution time and energy consumption for running a set of 

workloads, the step that partitioning computations to 

processing elements is critical. In this paper, we consider the 

partitioning of workload problem in a heterogeneous system 

containing multiple CPUs and GPUs. Our goal is to minimize 

the execution time. 

Embedded applications that we are used to process are 

generally complex such as MPEG, H263, and H264.......etc 

etc encoders. This type of application is characterized by parts 

of different types, a party is treated regularly and the other 

irregularly. The latter represents intensive computing. For this 

type of application two types of parallel processing are 

applied, regular processing (task Parallelism) and irregular 

processing (data Parallelism). Furthermore, video coding 

standards like H.264/AVC [3] and HEVC [4] are adopting 

complex algorithms like context-adaptive binary arithmetic 

coding (CABAC) and variable length coding (CAVLC) in 

order to achieve better compression and thus lower 

transmission bitrates for high resolution video sequences. The 

additional complexity of these algorithms has a major impact 

by increasing execution time and energy consumption. 

In our research, we intend to solve the problem of high 

complexity of the H.264 decoder using parallelization on 

multicore embedded processors and on graphical processors. 

Video resolutions are increasing rapidly, which require more 

processing time and consequently more energy consumption. 

Many solutions based on parallel execution exist ranging from 

macroblocks (fine-grain) till groups of pictures (coarse-grain) 

parallel decoding. Macroblock parallel decoding is highly 

scalable since many macroblocks can be processed in parallel. 

However, dependencies and huge overheads are created as a 

result of communication and synchronization between 

macroblocks. Parallel decoding of groups of pictures require 

large memories for high definition video sequences. In 

addition, they have a lower scalability than macroblock 

decoding because of the limited number of groups of frames 

that can be decoded in parallel. Our solution is based on the 

H264 video decoder design taking into account the different 

parallelism and heterogeneous multiprocessor architecture 

CPUs/GPUs. 

Our main contribution in this paper is to propose a new 

approach based on modeling analyze the computational 

requirements of H.264 decoder and implement H.264 decoder 

on heterogeneous architecture (multi-CPUs/multi-GPUs) in 

order to minimize execution time. Our approach utilizes 

parallel processing techniques such as workload partitioning. 
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The remainder of the paper is organized as follows. In Section 

2, we present the related work concerning H.264 parallel 

optimizations. In Section 3, we describe our approach for 

parallel execution of macroblock rows of the H.264 decoder. 

In Section 4, we present the experimental results for execution 

time on CPUs and GPUs using a simulator for multicore 

processors. Final conclusion and future work are given in 

Section 5. 

2. RELATED WORKS 
Ever since the H.264/AVC standard [3] was published in 

2003, researchers started to solve the high complexity issue of 

the new standard mainly using parallelism. Several 

modifications were suggested for the H.264 encoders and 

decoders in order to improve the performance in terms of 

execution time and memory usage. Parallel decoding 

techniques of H.264 exist from the highest level, which is the 

group of frames or pictures (GOP), the coarse-grain level, till 

the lowest level, which is the block inside a macroblock, the 

fine-grain level. Kannangara [5] reduced the complexity of 

the H.264 decoder (19-65%) by predicting the SKIP 

macroblocks using an estimation based on a Lagrangian rate-

distortion cost function. Gurhanli [6] suggested a parallel 

approach by decoding independent groups of frames on 

different cores. The speedup is conditioned with the 

modification of the encoder in order to omit the start-code 

scanner process. Any modification to the encoder will require 

a long process for modifying the H.264 specification in order 

to be compliant with the standard. The exclusion of previously 

encoded video sequences is also an effect for modifying the 

H.264 encoder. Nishihara [7] proposed a load balancing 

mechanism among cores where partitions sizes are adjusted 

during runtime. He also reduced the memory access 

contention based on execution time prediction. Among frame-

level and MB-level parallelization, the 3D-wave technique 

proposed by Azevedo [8] decodes independent MBs in 

parallel on different cores. A good scalability is proved for 

HD resolutions where macroblocks are scanned in zigzag 

mode and decode independent macroblocks in parallel. Chong 

[9] added a pre-parsing stage in order to resolve control 

dependencies for MB-level parallelization. Van Der Tol [10] 

mapped video sequences data over multiple processors 

providing better performance over functional parallelization. 

He groups macroblocks in a way that minimal dependency 

between cores is required. Horowitz [11] compared different 

H.264 implementations including FFmpeg [17] and the H.264 

reference software JM [18]. He also analyzed the complexity 

of the H.264 decoder subsystems. Sihn [12] proposed a 

multicore pipeline for the deblocking filter based on the group 

of pictures data level partitioning. He also suggested software 

memory throttling and fair load balancing techniques in order 

to improve multicore processors performance when several 

cores are used. [13] Proposes to decode the lines of the 

macroblocks in parallel on a certain number of cores of the 

processors, the dependencies between macroblocks are 

ignored. [16] Implements H264 decoder on FPGA 

architecture. In our research we optimize the H.264 decoder 

knowing that our approach can be also applied to the H.264 

encoder. We focus on improving the efficiency of the H.264 

decoder using heterogeneous processors CPU/GPU. We 

model the H264 / AVC decoder with the recent standard 

MARTE profile [14] taking into account the different 

parallelism (component parallelism and data parallelism) and 

the data dependency between macroblocks. We map our 

implementation on CPU and GPU processors. Execution time 

implementation is calculated using simulated execution time. 

We further implement an OpenCL [2] version of our parallel 

H.264 implementation. Simulation experiments on 

heterogeneous processors are conducted using a CPU-GPU 

simulation Multi2Sim [21]. 

3. HETEROGENEOUS SYSTEM 

ARCHITECTURE (HAS) 
The Generic graphics processors or GPGPU (General Purpose 

GPU) have evolved in such a way that they can now perform 

parallel calculations for a wide range of applications. 

However, programming these devices at the same time as the 

CPU present on the same chip constitutes a major difficulty. 

A new architectural concept, The HSA (Heterogeneous 

System Architecture), paves the way for greater fluidity in the 

development of heterogeneous code. 

The GPUs (Graphics Processing Unit) have passed in recent 

years from the status of purely graphic accelerators to that of 

generic parallel processors, Supported by standard APIs and 

tools such as OpenCL and DirectCompute. Despite this 

promising start, there are still many obstacles to the existence 

of an environment using the GPU in a manner as transparent 

as the CPU (Central Processing Unit, General processor) for 

current tasks of programing. The CPU and the GPU, in 

particular, manage different memory spaces, and the hardware 

is not virtualized. The HSA (Heterogeneous System 

Architecture) architecture eliminates these obstacles, So that 

the programmer can exploit the parallel processor contained in 

the GPU as a coprocessor of the same level as the traditional 

multi-threaded CPU. 

HSA is actually a software layer that provides a unified view 

of the fundamental processing elements, and allows the 

programmer to write applications that smoothly integrate 

CPUs and GPUs while benefiting from the best characteristics 

of each. The underlying strategy is to create a unified 

programming platform that serves as a foundation for the 

deployment of languages, Frameworks and applications that 

exploit parallelism. More specifically, HSA intends to break 

the programmability barrier CPU/GPU, Reduce 

communication latency CPU / GPU, Open the platform to a 

wider range of applications by accepting existing 

programming models, And prepare the reception of new 

processing units in addition to CPU and GPU[19]. 

 

Fig 1: Architecture HAS 

New class processors known as Accelerated Processing Unit 

or APU in a grate CPUs and GPUs in the same computer chip 

[20], two different processor units working together like a 

human brain is a enable by heterogeneous system architecture 

or HSA. “Figure 1”. 

Two sides of AMD API (CPU and GPU) share the same 

system memory known as heterogeneous Uniform Memory 

Access or hUMA1 via cache coherent views. Advantages 

include an easier programming model and less copying of 

data between separate memory pools. 

In our work we are interested by news type of architecture 

such as heterogeneous architecture GPGPU (multi- 

CPUs/multi-GPUs) based on Heterogeneous System 
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Architecture (HSA) in order to benefit from advantages of 

HSA. 

4. AN OVERVIEW OF THE H.264 

STANDARD 
H.264/ AVC [22] video compression standard takes advantage 

from spatial and temporal redundancy in a video sequence. 

Therefore, it defines various prediction modes to predict each 

macroblock depending on its texture properties. 

In encoder processing, residual macroblocks consists of 

difference between original macroblocks and the 

corresponding predicted one. Residual is the final data 

organized in bitstream. 

Decoder is responsible to reconstruct a video sequence from 

the compressed data created by encoder. As shown in Figure 

1, first step is entropy decoding. It receives the compressed 

bitstream to reconstruct video parameters and residual 

coefficients. Then, two primary paths are considered in 

decoder process. First one is the decoding of residual 

macroblocks by inverse quantization and inverse transform. 

Second path is the generation of the predicted macroblocks 

according to prediction mode fixed by encoder. The addition 

of the outputs of these two paths is the reconstruct 

macroblock. A deblocking filter is then applied to have a 

better video quality. For more details, following sub-sections 

describe every module of decoder. 

Fig 2: H.264/AVC decoder 

4.1 Elements of a Video Sequence 
H.264 is a block-based coder/decoder (codec), meaning that 

each frame is divided into small square blocks called 

macroblocks (MBs). The coding tools / kernels are applied to 

MBs rather than to whole frames, thereby reducing the 

computational complexity and improving the accuracy of 

motion prediction. Figure 3 depicts a generic view of the data 

elements in a video sequence. It starts with the sequence of 

frames that comprise the whole video. Several frames can 

form a Group of Pictures (GOP), which is an independent set 

of frames. Each frame can be composed of independent 

sections called slices, and slices ones, in turn, consist of MBs. 

Each MB can be further divided into sub-blocks, which in 

turn, consist of pixels. 

 
Fig 3: Elements of a video sequence 

A MB consists of separated blocks for luma (denoted by Y) 

and chroma signals (denoted by Cb and Cr). A pre-processing 

step has to be applied to convert video from a different color 

component format (such as red-green-blue, RGB) to the Y Cb 

Cr color model. Chroma sub-sampling is applied to reduce the 

amount of color information, since the human eye is more 

sensitive to brightness (Y) than to color (Cb and Cr) [23]. The 

most common color structure is denoted by 4:2:0 in which the 

chroma signals (Cb and Cr) are sub-sampled by 2 in both 

dimensions. As a result, in H.264, as in most MPEG and ITU-

T video codecs, each MB typically consists of one 16 × 16 

luma block and two 8 × 8 chroma blocks. 

4.2 Frame Types 
H.264 defines three main types of frames: I-, P-, and B 

frames. An I-frame uses intra-prediction and is independent of 

other frames. In intra-prediction, each MB is predicted based 

on adjacent blocks from the same frame. A P-frame (Predicted 

frame) uses motion estimation as well as intra-prediction and 

depends on one or more previous frames, which can be either 

I-, P- or B-frames. Motion estimation is used to exploit 

temporal correlation between frames. Finally, B-frames 

(Bidirectionally predicted frames) use bidirectional motion 

estimation and can depend on previous frames as well as 

future frames [24]. 

Figure 4 illustrates a typical I-P-B-B (first an I-frame, then 

two B-frames between P-frames) sequence. The arrows 

indicate the dependencies between frames caused by motion 

estimation. In order to ensure that a reference frame is 

decoded before the frames that depend on it, and because B-

frames can depend on future frames, the decoding order (the 

order in which frames are stored in the bitstream) differs from 

the display order. Thus a reordering step is necessary before 

the frames can be displayed, adding to the complexity of 

H.264 decoding. 

 
Fig 4: Types of frames and display order versus decoding 

order 

4.3 H.264 Decoding Tools 
The H.264 standard has many decoding tools each one with 

several options. Here we can only briefly mention the key 

features. 

4.3.1 Entropy decoding 
After decoding Network Abstraction Layer (NAL) 

parameters, the data elements are entropy decoded by two 

ways: Context-based Adaptive Variable Length Decoding 

(CAVLD) or a binary arithmetic coder (CABAC) which 

achieves higher compression and Exp-Golomb. 

Exp-Golomb: is used for others syntaxes elements such as 

prediction mode and quantization parameter. 
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CAVLD is more time consuming than Exp-Golomb [27]. It is 

used to reconstruct and to reorder data on 4x4 block of 16 

integers. By the mean of standard code tables, each 4x4 block 

is decoded into five syntax elements: Coefftoken, Sign, Level, 

TotalZeros, and Run [22][23].CAVLDis easier to implement 

than CABAC. 

4.3.2 Inverse quantization 
CAVLD output is a residual quantified macroblock. 

Following step is inverse quantization to produce a set of 

coefficients (Wij). Since quantization is a losing information 

step, inverse quantization reconstructs data. It is 

multiplication operation as described in equation 1, where 

Zijis inverse quantization input, Wij is its output and 𝑄𝑠𝑡𝑒𝑝 is a 

quantization factor given by standard according to Qpvalue. 

Qp Is the quantization parameter fixed by encoder. It is 

decoded from the bitstream using Exp-Golomb codes. 

Wij=Zij∙Qstep                       (1) 

In order to manipulate only integer value in transform step, 

H.264 standard have postponed real multiplication operation 

from transform to quantization [23].Details of this operation is 

given in inverse transform sub section. The final inverse 

quantization equation given by standard is described by 

equation 2, whereVij is the rescaling factor defined by the 

standard. 

Wij=Zij∙Vij∙2
floor(Qp/6)             (2) 

To implement this equation, a number of shifts equal to 

“floor(Qp/6)” was used instead of arithmetic multiplication. 

Shift operation is less time consuming than multiplication 

operation. 

4.3.3 Inverse transform 
In previous video coding standards, Inverse Discrete Cosine 

Transform (DCT) was used. Inverse transform step is applied 

for each 4x4 block. For 16x16 Intra prediction modes, a 

suppliant Hadamard transform is adding for DC Coefficients. 

Most of the energy is concentrated in the DC coefficients for a 

16x16 intra coded macroblock. This extra transform helps to 

de-correlate the DC coefficients to take advantage of the 

correlation among coefficients. As shown in Figure 5, DC 

coefficients of each 4x4 block are assembling in a matrix to 

applied inverse Hadamard transform given by equation 4. An 

inverse DC quantization is also applied on DC matrix. 

R=FT(T⊗E)F 

 

1 1 1 1/2
1 1/2 −1 −1
1 −1/2 −1 1
1 −1 1 −1/2

   

𝑇00 𝑇01 𝑇02 𝑇03

𝑇10 𝑇11 𝑇12 𝑇13

𝑇20 𝑇21 𝑇22 𝑇23

𝑇30 𝑇31 𝑇32 𝑇33

 

⊗  

𝑎2 𝑎𝑏 𝑎2 𝑎𝑏
𝑎𝑏 𝑏2 𝑎𝑏 𝑏2

𝑎2 𝑎𝑏 𝑎2 𝑎𝑏
𝑎𝑏 𝑏2 𝑎𝑏 𝑏2

   

1 1 1 1
1 1/2 −1/2 −1
1 −1 −1 1

1/2 −1 1 −1/2

 (3) 

With a= 
1

2
 and b= 

2

5
 

𝑅𝐷𝐶𝐿𝑢𝑚𝑎

=  

1 1 1 1
1 1 −1 −1
1 −1 −1 −1
1 −1 1 −1

  

𝑇𝐷𝐶0 𝑇𝐷𝐶1 𝑇𝐷𝐶2 𝑇𝐷𝐶3

𝑇𝐷𝐶4 𝑇𝐷𝐶5 𝑇𝐷𝐶6 𝑇𝐷𝐶7

𝑇𝐷𝐶8 𝑇𝐷𝐶9 𝑇𝐷𝐶10 𝑇𝐷𝐶11

𝑇𝐷𝐶12 𝑇𝐷𝐶13 𝑇𝐷𝐶14 𝑇𝐷𝐶15

  

1 1 1 1
1 1 −1 −1
1 −1 −1 −1
1 −1 1 −1

  

(4) 

 

Fig 5:DC coefficients positions in a macroblock 

4.3.4 Inverse prediction 
Because of redundancy in video sequence, H.264/AVC 

standard is based on two principal prediction modes [22]. 

Temporal resemblance between frames is treated as inter 

prediction. Spatial resemblance in same frame is treated as 

intra prediction. In LETI decoder, first frame of a sequence is 

necessarily Intra (4x4 or 16x16) coded because it hasn’t 

reference frame. For next P frames, each macroblock can be 

coded intra (4x4 or 16x16) or inter prediction. 

The 4x4 intra prediction modes are suitable for significant 

details within a frame. Each 4x4 block is predicted 

independently from spatially neighboring coefficients. One of 

nine prediction modes illustrated by Figure 6 [23] is used. 

According to adjacent block availability, modes can be 

applied or not. Vertical prediction mode (called also Mode 0) 

cannot be applied only if top neighboring block at least is 

available, because this mode copies pixels above the 4x4 

block as indicated in Figure 6. For horizontal prediction mode 

(Mode 1), the pixels to the left of the 4x4 block are copied 

horizontally if available. Adjacent pixels availability is not 

necessary to perform DC prediction mode (mode 2). The 

remaining 6 modes are diagonal prediction modes. They use 

defined equation to privilege specified direction. Directional 

modes are suited but they entail additional complexity in the 

decoding process [25]. 

The 16x16 intra predictions is characterized by four prediction 

modes: horizontal mode, vertical mode, DC mode and planer 

mode. Except of planer mode, all modes have respectively the 

same propriety of 4x4 modes but they are applied on a 16x16 

macroblock. In planer mode, a curve fitting equation is used 

to form a prediction block having a brightness and slope in the 

horizontal and vertical directions that approximately matches 

the neighboring pixels. After statistic work [27], planer mode 

has been eliminated from LETI encoder because of its 

supplementary incising complexity relative to its video quality 

contribution. 

In inter prediction case; motion vector is first extracted from 

bitstream. Then, motion compensation module is applied. It 

consists of adding motion vector coordinates to corresponding 

block in reference frame. Result is reconstructed block. Block 

size can change from one motion vector to other. Different 

block sizes are supported in H.264/AVC standard, as shown 

in Figure 7. In LETI decoder only one frame reference is 

applied and smaller block size for motion vector is 8x8[27]. 

The data obtained from the intra or inter prediction is added to 

the inverse transformed residual coefficients. This sum is 
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copied to the decoded buffer which is used as an input for 

deblocking filter step. 

 
Fig 6:4x4 Intra prediction modes 

 

Fig 7:Inter prediction block size type 

4.3.5 Deblocking filter 
The deblocking filter performs in-loop filtering to reduce 

blocking artifacts created by image partitioning and 

quantization. After inverse quantization and inverse 

transform, the deblocking filter compares the edge values of 

each 4x4 block with its adjacent block to select the level of 

filtering. In LETI decoder, Strong or Standard filter is selected 

according to the block edge, macroblock position in frame and 

prediction mode. The design algorithm of deblocking filter 

used in this work is shown with details in [28]. 

5. H.264 IMPLEMENTATION 

5.1 H264 Decoder Partitioning 
The H264 decoder process is modeled with the UML / 

MARTE specification, as shown in the figure 8.Where it's 

divided into five main functional parts: Entropy Decoder 

(ED), Inverse Quantization (INVQ), Inverse Transform 

(IDCT), Inverse prediction (INV-Pred) and and Deblocking 

Filter (DF). After decoding Network Abstraction Layer 

(NAL) parameters, the data elements are entropy decoded, 

that is divided into 3 components: Exp-Golomb is used to 

extract syntax elements such as the prediction mode and the 

quantization parameter, CAVLD is used to reconstruct and to 

reorder data on 4x4 blocks of 16 integers. Incoming maclocks 

are analyzed with an inter-prediction and intra-prediction in 

order to increase the coding efficiency by finding redundant 

information. In the intra-prediction, it determine predicted 

pixels according to the prediction mode and the macroblock 

position within a frame (MBX, MBY). Neighboring pixels are 

generated by a suppliant component called “Neighboring 

pixels”. In the intra-prediction, macroblocks are decoded by a 

vector, called motion vector, the component Intra/Inter selects 

the right prediction. The Sub-component consists in 

subtracting the redundant information from the initial frame. 

The component Inverse quantization input is 16 coefficients 

of a block seized 4x4 the CAVLC outputs, component Inverse 

Transform used Inverse Discrete Cosine Transform (DCT) 

Inverse transform step is applied for each 4x4 block.  

Deblocking filter is executed at the end of the decoding 

process in order to reduce the edging effect between 

macroblock borders 4X4 after adding the coefficients 

predicted and transformed by the component addition.  

Whereas components, Inverse Quantization, Inverse 

Transform and Deblocking filter correspond contain intensive 

data-parallel computations. The Repetitive Structure 

Modeling (RSM) package of MARTE offers suitable concepts 

to describe such computations. 

5.2 H264 Decoder Functional Partitioning 
According the MARTE model in figure8, the video decoding 

application is composed of six tasks called Decoding Exp-

Golomb (Exponential-Golom), MB-Header, Context-based 

Adaptive Variable Length Decoding (CAVLD), Inverse 

Quantization (INVQ), Inverse Transform (INVT), Inverse 

prediction (INV.Pred) and Deblocking filter (DBfilter). As 

shown in figure 9. 

 
Fig 9:H.264 decoder task graph 

Exp-Golomb and MB-Header are running in the first place 

and sequentially because of data dependency. CAVLD, 

Inverse quantization and inverse transform are running 

sequentially because of data dependency. Inverse prediction 

task can be done in parallel with CAVLD, inverse 

quantization and inverse transform (task Parallelism). Inverse 

prediction and inverse transform tasks should be completed 

before running DBfilter. 

5.3 H264 Decoder Data Partitioning 

5.3.1 Low-level parallelization: decode 

macroblocks in parallel
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Fig 8: Video application modeling based on the H.264 decoder 

In H.264, there are 3 types of macroblocks: I-, P-, and B 

frames. An I-MB uses intra-prediction., each MB is predicted 

based on adjacent blocks from the same slice of frame. A P-

MB (Predicted macroblock) uses motion estimation as well as 

intra-prediction and depends on one or more macroblocks 

from previously decoded frames. Motion estimation is used to 

exploit temporal correlation between frames. Finally, B-MB 

(Bidirectionally predicted macroblocks) uses bidirectional 

motion estimation and can depend on previous frames as well 

as future frames. 

Fig 10:H.264 decoder task graph with Data parallelism 

 

In our work we use the frame sequence I-, P-, and B frames, 

for more details see section 4.2. Each frame is subdivided into 

16x16 or 4x4macroblocks. For each frame sequence we have 

a single frame of type Ï, we start with coded I-macroblocks 
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sequentially then P-macroblocks and B-macroblocks are 

coded in parallel. As shown in figure 10. 

5.3.2 High-level parallelization: decode several 

slices in parallel 
An H.264 video stream, an image can be decomposed into 

sub-images (slices). Idea behind is to treat slices together in 

parallel which reduces the execution time. Compressed stream 

processing tasks (Exp-Golomb and MB-Header) cannot be 

parallelized, the other processing tasks, they are duplicated for 

each slice. The task graph obtained is shown in Figure 11. 

 

 

 

Fig 11: Task graph of the video decoder application with duplication of processing tasks 

 

5.4 Implementation of H264 Decoder on 

CPUs / GPUs 
In our work we are interested by news type of architecture 

such as heterogeneous architecture GPGPU (multi-

CPUs/multi-GPUs) based on Heterogeneous System 

Architecture (HSA). In HSA, the CPU processor and GPU 

processor run together and in the same level, data access for 

the GPU is direct via shared heterogeneous memory. 

Exp-Golomb and MB_Header tasks are executed in the first 

and sequentially because of data dependency on CPU. These 

two tasks are executed in the same to cancel the data transfer 

time. 

CAVLD, Inverse quantization and inverse transform are 

running sequentially because of data dependency. These tasks 

are executed on GPU (first GPU) because this latter contain 

intensive data-parallel computations and The Repetitive 

Structure) in order to benefit from advantages of GPU 

(parallel computing). 

Inverse prediction task can be done in parallel with C AVLD, 

inverse quantization and inverse transform (task Parallelism). 

This task is executed on GPU (second GPU). The I-

macroblocks are coded sequentially on a GPU core, P and B 

macroblocks are coded in parallel on other GPU cores. 

Inverse prediction and inverse transform tasks should be 

completed before running DBfilter. So DBfilter can be run on 

either GPU1 or GPU2. 

6. EXPRIMENTAL AND RESULTS   

6.1 Simulations 
The H.264 reference software, JM [18], is an open source 

implementation used as a reference implementation for the 

H.264 standards. In our research, we modified the JM [18] 

source code of the H.264 decoder in order to decode 

macroblocks in parallel (P et B) and I sequentially, partition 

the source code into sub-code and run them on the different 

processor using the PThread library in C programming 

language. Our H.264 implementation is executed in real HSA 

architecture by emulator Multi2Sim [21], a cycle-accurate 

simulator for multicore x86 and graphics processors. Cache 

and memory configurations comply with common x86 

processors that are available nowadays in many Intel [32] or 

AMD [29] processor chips. Each core has a private L1 cache 

of 512 KB and All other cores have a shared L2 cache of 2 

MB and shared memory between the two processors CPU and 

GPU. We simulate the execution of our parallel H.264 

decoder using 2 GPU multicore (AMD Evergreen) and CPU 

multicore (x86). We perform simulation experiments of the 

H.264 OpenCL version on the AMD Evergreen GPU family 

with the configurations of the AMD Radeon 5870 GPU 

[31].We gather statistics using 15 video sequences with HD 

resolution is performed for the H.264 decoding process of 60 

frames for each video sequence. 
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Fig 12: Execution time of the H264 decoder implementation on heterogeneous architecture HAS (multiCPU/multiGPU)

6.2 Results 
Execution times with different processors CPU/GPU using 

HD resolutions are illustrated in figure 12. 

The execution time for each task of the H264 video decoder 

on each type of processor taking into account the different 

parallelism (task parallelism, data parallelism) is shown in 

figure 12. This is the first work that deals with the 

implementation of H264 on heterogeneous architecture HAS 

(multiCPU/multiGPU) taking into account the different 

parallelism (task parallelism, data parallelism) and data 

dependence. 

Comparing our result with previous work [13] and [16], our 

approach gives a better performance in terms of execution 

time for each H264 decoder task and for entire application. 

7. CONCLUSION 
This paper illustrated the design of the H.264 encoder on a 

heterogeneous architecture HAS (multiCPU/multiGPU). A 

high-level modeling approach based on the standard MARTE 

profile has been adopted. The obtained model has been 

analyzed by considering different parallelism, data 

dependence and characteristics processors (CPU/GPU). Our 

approach gives a better performance in terms of execution. 

Finally, from a practical point of view, a complete 

implementation of our approach remains to be done 

(implementation of different slice in parallel).In the future, we 

are planning to integrate the idea of   automatically mapping 

and scheduling multimedia applications such as H264 onto 

heterogeneous architectures taking into account different 

parallelism (task parallelism, data parallelism) and data 

dependence and the cost of data transfer. 
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