
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

23

Design of the H264 application and Implementation on

Heterogeneous Architectures

Chahrazed Adda

University of Tiaret Ibn khaldoun
LIM laboratory, Tiaret

Algeria

Abou Elhassen Benyamina

University of Oran1 Ahmed Ben Bella
LAPECI laboratory, Oran

Algeria

ABSTRACT

Multimedia applications are present in most mobile hand-held

devices.H.264 is an emerging video coding standard, which

aims at compressing high-quality video contents at low-bit

rates. While the new encoding and decoding processes are

similar to many previous standards, the new standard includes

a number of new features and thus requires much more

computation than most existing standards do. The complexity

of H.264 standard poses a large amount of challenges to

implementing the encoder/decoder in real-time requiring large

amount of processing resources. This paper presents the

design and analysis of the H.264 decoder implemented on a

heterogeneous architecture (multi-CPUs/multi-GPUs). A

model-driven approach is adopted by using the standard

MARTE profile of UML. Our approach is based on hybrid

partitioning that combines both functional and data

partitioning which is applied to find the most suitable

processors (CPU or GPU) regarding the execution time. We

claim that our approach allows giving a better performance,

which is crucial when implemented in modern complex

systems.

Keywords

General-Purpose Graphics Processing Unit (GPGPU),

Multimedia, H.264/AVC decoder, Parallel Processing,

Functional Partitioning, Data Partitioning.

1. INTRODUCTION
In recent years, the performance improvement of Graphics

Processing Unit (GPU) is remarkable and GPUs are becoming

attractive as accelerators for heavy tasks. GPUs are now

commonly used as co-processors in many embedded systems

to accelerate general-purpose applications. They are

particularly capable of executing data-parallel applications,

due to their highly multithreaded architecture and high-

bandwidth memory. Various embedded system domains can

benefit high performance and better energy efficiency from

utilizing GPUs. For example, GPUs can efficiently perform

matrix operations such as factorization on large data sets and

multidimensional FFTs and convolutions. Such operations are

often seen in many embedded applications including signal

processing, imaging and video processing. By leveraging new

programming models, such as CUDA [1] and OpenCL [2],

programmers can effectively develop highly data-parallel

kernels to execute such applications on GPUs.

By integrating heterogeneous processing elements with

different performance characteristics in the same system,

heterogeneous CPU/GPU architectures are expected to

provide more flexibility for better performance compared to

homogeneous systems. Execution time and energy

consumption are imperative performance metric that needs to

be optimized in most embedded systems. In order to minimize

execution time and energy consumption for running a set of

workloads, the step that partitioning computations to

processing elements is critical. In this paper, we consider the

partitioning of workload problem in a heterogeneous system

containing multiple CPUs and GPUs. Our goal is to minimize

the execution time.

Embedded applications that we are used to process are

generally complex such as MPEG, H263, and H264.......etc

etc encoders. This type of application is characterized by parts

of different types, a party is treated regularly and the other

irregularly. The latter represents intensive computing. For this

type of application two types of parallel processing are

applied, regular processing (task Parallelism) and irregular

processing (data Parallelism). Furthermore, video coding

standards like H.264/AVC [3] and HEVC [4] are adopting

complex algorithms like context-adaptive binary arithmetic

coding (CABAC) and variable length coding (CAVLC) in

order to achieve better compression and thus lower

transmission bitrates for high resolution video sequences. The

additional complexity of these algorithms has a major impact

by increasing execution time and energy consumption.

In our research, we intend to solve the problem of high

complexity of the H.264 decoder using parallelization on

multicore embedded processors and on graphical processors.

Video resolutions are increasing rapidly, which require more

processing time and consequently more energy consumption.

Many solutions based on parallel execution exist ranging from

macroblocks (fine-grain) till groups of pictures (coarse-grain)

parallel decoding. Macroblock parallel decoding is highly

scalable since many macroblocks can be processed in parallel.

However, dependencies and huge overheads are created as a

result of communication and synchronization between

macroblocks. Parallel decoding of groups of pictures require

large memories for high definition video sequences. In

addition, they have a lower scalability than macroblock

decoding because of the limited number of groups of frames

that can be decoded in parallel. Our solution is based on the

H264 video decoder design taking into account the different

parallelism and heterogeneous multiprocessor architecture

CPUs/GPUs.

Our main contribution in this paper is to propose a new

approach based on modeling analyze the computational

requirements of H.264 decoder and implement H.264 decoder

on heterogeneous architecture (multi-CPUs/multi-GPUs) in

order to minimize execution time. Our approach utilizes

parallel processing techniques such as workload partitioning.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

24

The remainder of the paper is organized as follows. In Section

2, we present the related work concerning H.264 parallel

optimizations. In Section 3, we describe our approach for

parallel execution of macroblock rows of the H.264 decoder.

In Section 4, we present the experimental results for execution

time on CPUs and GPUs using a simulator for multicore

processors. Final conclusion and future work are given in

Section 5.

2. RELATED WORKS
Ever since the H.264/AVC standard [3] was published in

2003, researchers started to solve the high complexity issue of

the new standard mainly using parallelism. Several

modifications were suggested for the H.264 encoders and

decoders in order to improve the performance in terms of

execution time and memory usage. Parallel decoding

techniques of H.264 exist from the highest level, which is the

group of frames or pictures (GOP), the coarse-grain level, till

the lowest level, which is the block inside a macroblock, the

fine-grain level. Kannangara [5] reduced the complexity of

the H.264 decoder (19-65%) by predicting the SKIP

macroblocks using an estimation based on a Lagrangian rate-

distortion cost function. Gurhanli [6] suggested a parallel

approach by decoding independent groups of frames on

different cores. The speedup is conditioned with the

modification of the encoder in order to omit the start-code

scanner process. Any modification to the encoder will require

a long process for modifying the H.264 specification in order

to be compliant with the standard. The exclusion of previously

encoded video sequences is also an effect for modifying the

H.264 encoder. Nishihara [7] proposed a load balancing

mechanism among cores where partitions sizes are adjusted

during runtime. He also reduced the memory access

contention based on execution time prediction. Among frame-

level and MB-level parallelization, the 3D-wave technique

proposed by Azevedo [8] decodes independent MBs in

parallel on different cores. A good scalability is proved for

HD resolutions where macroblocks are scanned in zigzag

mode and decode independent macroblocks in parallel. Chong

[9] added a pre-parsing stage in order to resolve control

dependencies for MB-level parallelization. Van Der Tol [10]

mapped video sequences data over multiple processors

providing better performance over functional parallelization.

He groups macroblocks in a way that minimal dependency

between cores is required. Horowitz [11] compared different

H.264 implementations including FFmpeg [17] and the H.264

reference software JM [18]. He also analyzed the complexity

of the H.264 decoder subsystems. Sihn [12] proposed a

multicore pipeline for the deblocking filter based on the group

of pictures data level partitioning. He also suggested software

memory throttling and fair load balancing techniques in order

to improve multicore processors performance when several

cores are used. [13] Proposes to decode the lines of the

macroblocks in parallel on a certain number of cores of the

processors, the dependencies between macroblocks are

ignored. [16] Implements H264 decoder on FPGA

architecture. In our research we optimize the H.264 decoder

knowing that our approach can be also applied to the H.264

encoder. We focus on improving the efficiency of the H.264

decoder using heterogeneous processors CPU/GPU. We

model the H264 / AVC decoder with the recent standard

MARTE profile [14] taking into account the different

parallelism (component parallelism and data parallelism) and

the data dependency between macroblocks. We map our

implementation on CPU and GPU processors. Execution time

implementation is calculated using simulated execution time.

We further implement an OpenCL [2] version of our parallel

H.264 implementation. Simulation experiments on

heterogeneous processors are conducted using a CPU-GPU

simulation Multi2Sim [21].

3. HETEROGENEOUS SYSTEM

ARCHITECTURE (HAS)
The Generic graphics processors or GPGPU (General Purpose

GPU) have evolved in such a way that they can now perform

parallel calculations for a wide range of applications.

However, programming these devices at the same time as the

CPU present on the same chip constitutes a major difficulty.

A new architectural concept, The HSA (Heterogeneous

System Architecture), paves the way for greater fluidity in the

development of heterogeneous code.

The GPUs (Graphics Processing Unit) have passed in recent

years from the status of purely graphic accelerators to that of

generic parallel processors, Supported by standard APIs and

tools such as OpenCL and DirectCompute. Despite this

promising start, there are still many obstacles to the existence

of an environment using the GPU in a manner as transparent

as the CPU (Central Processing Unit, General processor) for

current tasks of programing. The CPU and the GPU, in

particular, manage different memory spaces, and the hardware

is not virtualized. The HSA (Heterogeneous System

Architecture) architecture eliminates these obstacles, So that

the programmer can exploit the parallel processor contained in

the GPU as a coprocessor of the same level as the traditional

multi-threaded CPU.

HSA is actually a software layer that provides a unified view

of the fundamental processing elements, and allows the

programmer to write applications that smoothly integrate

CPUs and GPUs while benefiting from the best characteristics

of each. The underlying strategy is to create a unified

programming platform that serves as a foundation for the

deployment of languages, Frameworks and applications that

exploit parallelism. More specifically, HSA intends to break

the programmability barrier CPU/GPU, Reduce

communication latency CPU / GPU, Open the platform to a

wider range of applications by accepting existing

programming models, And prepare the reception of new

processing units in addition to CPU and GPU[19].

Fig 1: Architecture HAS

New class processors known as Accelerated Processing Unit

or APU in a grate CPUs and GPUs in the same computer chip

[20], two different processor units working together like a

human brain is a enable by heterogeneous system architecture

or HSA. “Figure 1”.

Two sides of AMD API (CPU and GPU) share the same

system memory known as heterogeneous Uniform Memory

Access or hUMA1 via cache coherent views. Advantages

include an easier programming model and less copying of

data between separate memory pools.

In our work we are interested by news type of architecture

such as heterogeneous architecture GPGPU (multi-

CPUs/multi-GPUs) based on Heterogeneous System

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

25

Architecture (HSA) in order to benefit from advantages of

HSA.

4. AN OVERVIEW OF THE H.264

STANDARD
H.264/ AVC [22] video compression standard takes advantage

from spatial and temporal redundancy in a video sequence.

Therefore, it defines various prediction modes to predict each

macroblock depending on its texture properties.

In encoder processing, residual macroblocks consists of

difference between original macroblocks and the

corresponding predicted one. Residual is the final data

organized in bitstream.

Decoder is responsible to reconstruct a video sequence from

the compressed data created by encoder. As shown in Figure

1, first step is entropy decoding. It receives the compressed

bitstream to reconstruct video parameters and residual

coefficients. Then, two primary paths are considered in

decoder process. First one is the decoding of residual

macroblocks by inverse quantization and inverse transform.

Second path is the generation of the predicted macroblocks

according to prediction mode fixed by encoder. The addition

of the outputs of these two paths is the reconstruct

macroblock. A deblocking filter is then applied to have a

better video quality. For more details, following sub-sections

describe every module of decoder.

Fig 2: H.264/AVC decoder

4.1 Elements of a Video Sequence
H.264 is a block-based coder/decoder (codec), meaning that

each frame is divided into small square blocks called

macroblocks (MBs). The coding tools / kernels are applied to

MBs rather than to whole frames, thereby reducing the

computational complexity and improving the accuracy of

motion prediction. Figure 3 depicts a generic view of the data

elements in a video sequence. It starts with the sequence of

frames that comprise the whole video. Several frames can

form a Group of Pictures (GOP), which is an independent set

of frames. Each frame can be composed of independent

sections called slices, and slices ones, in turn, consist of MBs.

Each MB can be further divided into sub-blocks, which in

turn, consist of pixels.

Fig 3: Elements of a video sequence

A MB consists of separated blocks for luma (denoted by Y)

and chroma signals (denoted by Cb and Cr). A pre-processing

step has to be applied to convert video from a different color

component format (such as red-green-blue, RGB) to the Y Cb

Cr color model. Chroma sub-sampling is applied to reduce the

amount of color information, since the human eye is more

sensitive to brightness (Y) than to color (Cb and Cr) [23]. The

most common color structure is denoted by 4:2:0 in which the

chroma signals (Cb and Cr) are sub-sampled by 2 in both

dimensions. As a result, in H.264, as in most MPEG and ITU-

T video codecs, each MB typically consists of one 16 × 16

luma block and two 8 × 8 chroma blocks.

4.2 Frame Types
H.264 defines three main types of frames: I-, P-, and B

frames. An I-frame uses intra-prediction and is independent of

other frames. In intra-prediction, each MB is predicted based

on adjacent blocks from the same frame. A P-frame (Predicted

frame) uses motion estimation as well as intra-prediction and

depends on one or more previous frames, which can be either

I-, P- or B-frames. Motion estimation is used to exploit

temporal correlation between frames. Finally, B-frames

(Bidirectionally predicted frames) use bidirectional motion

estimation and can depend on previous frames as well as

future frames [24].

Figure 4 illustrates a typical I-P-B-B (first an I-frame, then

two B-frames between P-frames) sequence. The arrows

indicate the dependencies between frames caused by motion

estimation. In order to ensure that a reference frame is

decoded before the frames that depend on it, and because B-

frames can depend on future frames, the decoding order (the

order in which frames are stored in the bitstream) differs from

the display order. Thus a reordering step is necessary before

the frames can be displayed, adding to the complexity of

H.264 decoding.

Fig 4: Types of frames and display order versus decoding

order

4.3 H.264 Decoding Tools
The H.264 standard has many decoding tools each one with

several options. Here we can only briefly mention the key

features.

4.3.1 Entropy decoding
After decoding Network Abstraction Layer (NAL)

parameters, the data elements are entropy decoded by two

ways: Context-based Adaptive Variable Length Decoding

(CAVLD) or a binary arithmetic coder (CABAC) which

achieves higher compression and Exp-Golomb.

Exp-Golomb: is used for others syntaxes elements such as

prediction mode and quantization parameter.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

26

CAVLD is more time consuming than Exp-Golomb [27]. It is

used to reconstruct and to reorder data on 4x4 block of 16

integers. By the mean of standard code tables, each 4x4 block

is decoded into five syntax elements: Coefftoken, Sign, Level,

TotalZeros, and Run [22][23].CAVLDis easier to implement

than CABAC.

4.3.2 Inverse quantization
CAVLD output is a residual quantified macroblock.

Following step is inverse quantization to produce a set of

coefficients (Wij). Since quantization is a losing information

step, inverse quantization reconstructs data. It is

multiplication operation as described in equation 1, where

Zijis inverse quantization input, Wij is its output and 𝑄𝑠𝑡𝑒𝑝 is a

quantization factor given by standard according to Qpvalue.

Qp Is the quantization parameter fixed by encoder. It is

decoded from the bitstream using Exp-Golomb codes.

Wij=Zij∙Qstep (1)

In order to manipulate only integer value in transform step,

H.264 standard have postponed real multiplication operation

from transform to quantization [23].Details of this operation is

given in inverse transform sub section. The final inverse

quantization equation given by standard is described by

equation 2, whereVij is the rescaling factor defined by the

standard.

Wij=Zij∙Vij∙2
floor(Qp/6) (2)

To implement this equation, a number of shifts equal to

“floor(Qp/6)” was used instead of arithmetic multiplication.

Shift operation is less time consuming than multiplication

operation.

4.3.3 Inverse transform
In previous video coding standards, Inverse Discrete Cosine

Transform (DCT) was used. Inverse transform step is applied

for each 4x4 block. For 16x16 Intra prediction modes, a

suppliant Hadamard transform is adding for DC Coefficients.

Most of the energy is concentrated in the DC coefficients for a

16x16 intra coded macroblock. This extra transform helps to

de-correlate the DC coefficients to take advantage of the

correlation among coefficients. As shown in Figure 5, DC

coefficients of each 4x4 block are assembling in a matrix to

applied inverse Hadamard transform given by equation 4. An

inverse DC quantization is also applied on DC matrix.

R=FT(T⊗E)F

1 1 1 1/2
1 1/2 −1 −1
1 −1/2 −1 1
1 −1 1 −1/2

𝑇00 𝑇01 𝑇02 𝑇03

𝑇10 𝑇11 𝑇12 𝑇13

𝑇20 𝑇21 𝑇22 𝑇23

𝑇30 𝑇31 𝑇32 𝑇33

⊗

𝑎2 𝑎𝑏 𝑎2 𝑎𝑏
𝑎𝑏 𝑏2 𝑎𝑏 𝑏2

𝑎2 𝑎𝑏 𝑎2 𝑎𝑏
𝑎𝑏 𝑏2 𝑎𝑏 𝑏2

1 1 1 1
1 1/2 −1/2 −1
1 −1 −1 1

1/2 −1 1 −1/2

 (3)

With a=
1

2
 and b=

2

5

𝑅𝐷𝐶𝐿𝑢𝑚𝑎

=

1 1 1 1
1 1 −1 −1
1 −1 −1 −1
1 −1 1 −1

𝑇𝐷𝐶0 𝑇𝐷𝐶1 𝑇𝐷𝐶2 𝑇𝐷𝐶3

𝑇𝐷𝐶4 𝑇𝐷𝐶5 𝑇𝐷𝐶6 𝑇𝐷𝐶7

𝑇𝐷𝐶8 𝑇𝐷𝐶9 𝑇𝐷𝐶10 𝑇𝐷𝐶11

𝑇𝐷𝐶12 𝑇𝐷𝐶13 𝑇𝐷𝐶14 𝑇𝐷𝐶15

1 1 1 1
1 1 −1 −1
1 −1 −1 −1
1 −1 1 −1

(4)

Fig 5:DC coefficients positions in a macroblock

4.3.4 Inverse prediction
Because of redundancy in video sequence, H.264/AVC

standard is based on two principal prediction modes [22].

Temporal resemblance between frames is treated as inter

prediction. Spatial resemblance in same frame is treated as

intra prediction. In LETI decoder, first frame of a sequence is

necessarily Intra (4x4 or 16x16) coded because it hasn’t

reference frame. For next P frames, each macroblock can be

coded intra (4x4 or 16x16) or inter prediction.

The 4x4 intra prediction modes are suitable for significant

details within a frame. Each 4x4 block is predicted

independently from spatially neighboring coefficients. One of

nine prediction modes illustrated by Figure 6 [23] is used.

According to adjacent block availability, modes can be

applied or not. Vertical prediction mode (called also Mode 0)

cannot be applied only if top neighboring block at least is

available, because this mode copies pixels above the 4x4

block as indicated in Figure 6. For horizontal prediction mode

(Mode 1), the pixels to the left of the 4x4 block are copied

horizontally if available. Adjacent pixels availability is not

necessary to perform DC prediction mode (mode 2). The

remaining 6 modes are diagonal prediction modes. They use

defined equation to privilege specified direction. Directional

modes are suited but they entail additional complexity in the

decoding process [25].

The 16x16 intra predictions is characterized by four prediction

modes: horizontal mode, vertical mode, DC mode and planer

mode. Except of planer mode, all modes have respectively the

same propriety of 4x4 modes but they are applied on a 16x16

macroblock. In planer mode, a curve fitting equation is used

to form a prediction block having a brightness and slope in the

horizontal and vertical directions that approximately matches

the neighboring pixels. After statistic work [27], planer mode

has been eliminated from LETI encoder because of its

supplementary incising complexity relative to its video quality

contribution.

In inter prediction case; motion vector is first extracted from

bitstream. Then, motion compensation module is applied. It

consists of adding motion vector coordinates to corresponding

block in reference frame. Result is reconstructed block. Block

size can change from one motion vector to other. Different

block sizes are supported in H.264/AVC standard, as shown

in Figure 7. In LETI decoder only one frame reference is

applied and smaller block size for motion vector is 8x8[27].

The data obtained from the intra or inter prediction is added to

the inverse transformed residual coefficients. This sum is

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

27

copied to the decoded buffer which is used as an input for

deblocking filter step.

Fig 6:4x4 Intra prediction modes

Fig 7:Inter prediction block size type

4.3.5 Deblocking filter
The deblocking filter performs in-loop filtering to reduce

blocking artifacts created by image partitioning and

quantization. After inverse quantization and inverse

transform, the deblocking filter compares the edge values of

each 4x4 block with its adjacent block to select the level of

filtering. In LETI decoder, Strong or Standard filter is selected

according to the block edge, macroblock position in frame and

prediction mode. The design algorithm of deblocking filter

used in this work is shown with details in [28].

5. H.264 IMPLEMENTATION

5.1 H264 Decoder Partitioning
The H264 decoder process is modeled with the UML /

MARTE specification, as shown in the figure 8.Where it's

divided into five main functional parts: Entropy Decoder

(ED), Inverse Quantization (INVQ), Inverse Transform

(IDCT), Inverse prediction (INV-Pred) and and Deblocking

Filter (DF). After decoding Network Abstraction Layer

(NAL) parameters, the data elements are entropy decoded,

that is divided into 3 components: Exp-Golomb is used to

extract syntax elements such as the prediction mode and the

quantization parameter, CAVLD is used to reconstruct and to

reorder data on 4x4 blocks of 16 integers. Incoming maclocks

are analyzed with an inter-prediction and intra-prediction in

order to increase the coding efficiency by finding redundant

information. In the intra-prediction, it determine predicted

pixels according to the prediction mode and the macroblock

position within a frame (MBX, MBY). Neighboring pixels are

generated by a suppliant component called “Neighboring

pixels”. In the intra-prediction, macroblocks are decoded by a

vector, called motion vector, the component Intra/Inter selects

the right prediction. The Sub-component consists in

subtracting the redundant information from the initial frame.

The component Inverse quantization input is 16 coefficients

of a block seized 4x4 the CAVLC outputs, component Inverse

Transform used Inverse Discrete Cosine Transform (DCT)

Inverse transform step is applied for each 4x4 block.

Deblocking filter is executed at the end of the decoding

process in order to reduce the edging effect between

macroblock borders 4X4 after adding the coefficients

predicted and transformed by the component addition.

Whereas components, Inverse Quantization, Inverse

Transform and Deblocking filter correspond contain intensive

data-parallel computations. The Repetitive Structure

Modeling (RSM) package of MARTE offers suitable concepts

to describe such computations.

5.2 H264 Decoder Functional Partitioning
According the MARTE model in figure8, the video decoding

application is composed of six tasks called Decoding Exp-

Golomb (Exponential-Golom), MB-Header, Context-based

Adaptive Variable Length Decoding (CAVLD), Inverse

Quantization (INVQ), Inverse Transform (INVT), Inverse

prediction (INV.Pred) and Deblocking filter (DBfilter). As

shown in figure 9.

Fig 9:H.264 decoder task graph

Exp-Golomb and MB-Header are running in the first place

and sequentially because of data dependency. CAVLD,

Inverse quantization and inverse transform are running

sequentially because of data dependency. Inverse prediction

task can be done in parallel with CAVLD, inverse

quantization and inverse transform (task Parallelism). Inverse

prediction and inverse transform tasks should be completed

before running DBfilter.

5.3 H264 Decoder Data Partitioning

5.3.1 Low-level parallelization: decode

macroblocks in parallel

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

28

Fig 8: Video application modeling based on the H.264 decoder

In H.264, there are 3 types of macroblocks: I-, P-, and B

frames. An I-MB uses intra-prediction., each MB is predicted

based on adjacent blocks from the same slice of frame. A P-

MB (Predicted macroblock) uses motion estimation as well as

intra-prediction and depends on one or more macroblocks

from previously decoded frames. Motion estimation is used to

exploit temporal correlation between frames. Finally, B-MB

(Bidirectionally predicted macroblocks) uses bidirectional

motion estimation and can depend on previous frames as well

as future frames.

Fig 10:H.264 decoder task graph with Data parallelism

In our work we use the frame sequence I-, P-, and B frames,

for more details see section 4.2. Each frame is subdivided into

16x16 or 4x4macroblocks. For each frame sequence we have

a single frame of type Ï, we start with coded I-macroblocks

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

29

sequentially then P-macroblocks and B-macroblocks are

coded in parallel. As shown in figure 10.

5.3.2 High-level parallelization: decode several

slices in parallel
An H.264 video stream, an image can be decomposed into

sub-images (slices). Idea behind is to treat slices together in

parallel which reduces the execution time. Compressed stream

processing tasks (Exp-Golomb and MB-Header) cannot be

parallelized, the other processing tasks, they are duplicated for

each slice. The task graph obtained is shown in Figure 11.

Fig 11: Task graph of the video decoder application with duplication of processing tasks

5.4 Implementation of H264 Decoder on

CPUs / GPUs
In our work we are interested by news type of architecture

such as heterogeneous architecture GPGPU (multi-

CPUs/multi-GPUs) based on Heterogeneous System

Architecture (HSA). In HSA, the CPU processor and GPU

processor run together and in the same level, data access for

the GPU is direct via shared heterogeneous memory.

Exp-Golomb and MB_Header tasks are executed in the first

and sequentially because of data dependency on CPU. These

two tasks are executed in the same to cancel the data transfer

time.

CAVLD, Inverse quantization and inverse transform are

running sequentially because of data dependency. These tasks

are executed on GPU (first GPU) because this latter contain

intensive data-parallel computations and The Repetitive

Structure) in order to benefit from advantages of GPU

(parallel computing).

Inverse prediction task can be done in parallel with C AVLD,

inverse quantization and inverse transform (task Parallelism).

This task is executed on GPU (second GPU). The I-

macroblocks are coded sequentially on a GPU core, P and B

macroblocks are coded in parallel on other GPU cores.

Inverse prediction and inverse transform tasks should be

completed before running DBfilter. So DBfilter can be run on

either GPU1 or GPU2.

6. EXPRIMENTAL AND RESULTS

6.1 Simulations
The H.264 reference software, JM [18], is an open source

implementation used as a reference implementation for the

H.264 standards. In our research, we modified the JM [18]

source code of the H.264 decoder in order to decode

macroblocks in parallel (P et B) and I sequentially, partition

the source code into sub-code and run them on the different

processor using the PThread library in C programming

language. Our H.264 implementation is executed in real HSA

architecture by emulator Multi2Sim [21], a cycle-accurate

simulator for multicore x86 and graphics processors. Cache

and memory configurations comply with common x86

processors that are available nowadays in many Intel [32] or

AMD [29] processor chips. Each core has a private L1 cache

of 512 KB and All other cores have a shared L2 cache of 2

MB and shared memory between the two processors CPU and

GPU. We simulate the execution of our parallel H.264

decoder using 2 GPU multicore (AMD Evergreen) and CPU

multicore (x86). We perform simulation experiments of the

H.264 OpenCL version on the AMD Evergreen GPU family

with the configurations of the AMD Radeon 5870 GPU

[31].We gather statistics using 15 video sequences with HD

resolution is performed for the H.264 decoding process of 60

frames for each video sequence.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.7, December 2017

30

Fig 12: Execution time of the H264 decoder implementation on heterogeneous architecture HAS (multiCPU/multiGPU)

6.2 Results
Execution times with different processors CPU/GPU using

HD resolutions are illustrated in figure 12.

The execution time for each task of the H264 video decoder

on each type of processor taking into account the different

parallelism (task parallelism, data parallelism) is shown in

figure 12. This is the first work that deals with the

implementation of H264 on heterogeneous architecture HAS

(multiCPU/multiGPU) taking into account the different

parallelism (task parallelism, data parallelism) and data

dependence.

Comparing our result with previous work [13] and [16], our

approach gives a better performance in terms of execution

time for each H264 decoder task and for entire application.

7. CONCLUSION
This paper illustrated the design of the H.264 encoder on a

heterogeneous architecture HAS (multiCPU/multiGPU). A

high-level modeling approach based on the standard MARTE

profile has been adopted. The obtained model has been

analyzed by considering different parallelism, data

dependence and characteristics processors (CPU/GPU). Our

approach gives a better performance in terms of execution.

Finally, from a practical point of view, a complete

implementation of our approach remains to be done

(implementation of different slice in parallel).In the future, we

are planning to integrate the idea of automatically mapping

and scheduling multimedia applications such as H264 onto

heterogeneous architectures taking into account different

parallelism (task parallelism, data parallelism) and data

dependence and the cost of data transfer.

8. REFERENCES
[1] C. Nvidia. Compute unified device architecture

programming guide.

[2] K. Corporation. The OpenCL Language.

www.khronos.org/opencl, 2011.

[3] AISO/IEC. International standard. Part 10: Advanced

video coding,

[4] JCT-VC. High efficiency video coding (HEVC) text

specification draft 8. 10th Meeting: Stockholm, SE, 1120

July2012.

[5] C. S. Kannangara and I. E. G. Richardson and M.

Bystrom and J. Solera and Y. Zhao and A. Maclennan

Complexity reduction of H.264 using Lagrange

Optimization Methods. IEE VIE 2005, Glasgow, UK,

2005.

[6] A. Gurhanli and S. Hung. Coarse grain parallelization of

h.264 video decoder and memory bottleneck in multi-

core architectures. International Journal of Computer

Theory and Engineering vol. 3, no. 3, pages 375–381,

2011.

[7] K. Nishihara, A. Hatabu, and T. Moriyoshi.

Parallelization of h.264 video decoder for embedded

multicore processor. ICME, pages 329–332, 2008.

[8] A. Azevedo, C. Meenderinck, B. Juurlink, A. Terechko,

J. Hooger-brugge, M. Alvarez, and A. Ramirez. Parallel

h.264 decoding on an embedded multicore processor.

HiPEAC, pages 404–418, 2009.

[9] J. Chong, N. Satish, B. Catanzaro, K. Ravindran, and K.

Keutzer. Efficient parallelization of h.264 decoding with

macro block level scheduling. ICME, pages 1874–1877,

2007.

[10] E. Van Der Tol, E. Jaspers, and R. Gelderblom. Mapping

of h.264 decoding on a multiprocessor architecture.

Image and Video Communications and Processing, pages

707–718, 2003.

[11] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro.

H.264/avc baseline profile decoder complexity analysis.

IEEE Trans. Circuits Syst. Video Techn., 13(7):704–716,

2003.

[12] K. Sihn, H. Baik, J. Kim, S. Bae, and H. Song. Novel

approaches to parallel h.264 decoder on symmetric

multicore systems. Proceedings of the 2009 IEEE

International Conference on Acoustics, Speech and

Signal Processing, ICASSP 09, pages 2017–2020,

Washington, DC, USA, 2009. IEEE Computer Society.

[13] Elias Baaklini and all, H.264 Parallel Optimization on

Graphics Processors, MMEDIA 2013 : The Fifth

International Conferences on Advances in Multimedia

31

[14] OMG, “MARTE Web Site,” 2009, www.omgmarte.org.

[15] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli.

Multi2Sim: A Simulation Framework for CPU-GPU

Computing. Proc. of the 21st International Conference on

Parallel Architectures and Compilation Techniques, Sep.,

2012.

[16] R. Bonamy Modélisation, exploration et estimation de la

consummation pour les architectures hetéerogénes

reconfigurables dynamiquement HAL Id: tel-00931849

https://tel.archives-ouvertes.fr/tel-00931849v2Submitted

on 17 May 2014.

[17] FFmpeg project. http://www.ffmpeg.org/.

[18] K. Suhring. H.264 reference software. http://bs.hhi.de/

suehring/tml/.

[19] TarunIyer (30 April 2013). "AMD Unveils its

Heterogeneous Uniform Memory Access (hUMA)

Technology". Tom's Hardware.

[20] George Kyriazis (30 August 2012). Heterogeneous

System Architecture: A Technical Review (PDF)

(Report). AMD.

[21] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli.

Multi2Sim: A Simulation Framework for CPU-GPU

Computing. Proc. of the 21st International Conference on

Parallel Architectures and Compilation Techniques, Sep.,

2012.

[22] Wiegand (Ed.), T, “ Draft ITU-T Recommendation

H.264/AVC and Draft ISO/IEC 14496-10 AVC”, Joint

Video Team of ISO/IEC JTC1/SC29/WG11 &ITU-T

SG16/Q.6 Doc. JVT-G050, Mar.

[23] Richardson, I.E.G.: Video Codec Design: Developing

Image and Video Compression Systems. John Wiley and

Sons (2002).

[24] Flierl, M., Girod, B.: Generalized B Pictures and the

Draft H. 264/AVC Video-Compression Standard. IEEE

Transactions on Circuits and Systems for Video

Technology 13(7), 587–597(2003).

[25] Soon-kak Kwon, A. Tamhankar, K.R. Rao, “Overview of

H.264/AVC / MPEG-4 Part 10”, Journal of Visual

Communication and Image Representation, Vol. 17, No

2 , pp 186–216, Apr. 2006.

[26] Kessentini A., Kaaniche B., Werda I., Samet A.,

Masmoudi N., “Low complexity intra 16x16 prediction

for H.264/AVC” International Conference on Embedded

Systems & Critical Applications ICESCA,2008, Tunisia.

[27] Werda I., Chaouch H, Samet A, Ben Ayed M-A,

Masmoudi N., “Optimal DSP Based Integer Motion

Estimation Implementation for H.264/AVC Baseline

Encoder”, The International Arab Journal of Information

Technology, Vol. 7, No. 1, January 2010.

[28] Damak T., Werda I., Masmoudi N., Bilavarn S., “Fast

prototyping H.264 deblocking filter using ESL Tools”,

2011 8th International Multi-Conference on Systems,

Signals &Devices,SSD.

[29] AMD Opteron Processor Family. http://www.amd.com/.

[30] AMD Evergreen Family Instruction Set Arch. (vl.Od).

[31] http://developer.amd.com/sdks/amdappsdk/documentatio

n/.

[32] Intel Core Processor Family. http://www.intel.com

IJCATM : www.ijcaonline.org

