
International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.8, December 2017

Safety Design for Simulation Models based on Formal
Methods

Wassim Trojet
ESIGELEC-IRSEEM

Technopole du Madrillet,
Avenue Galilee - BP 10024,

76801 Saint-Etienne du Rouvray Cedex

ABSTRACT
Control theory researchers have been using DEVS models to for-
malize discrete event systems for a long time. Despite such systems
are one of the main targets of Software Engineers, the DEVS for-
malism lacks tools offering representing and verifying safety prop-
erties. The general scope of the paper consists of extending the
DEVS framework to support safety properties and verify them by
using formal methods. Thus, we offer a possibility for DEVS user
to describe safety properties and to verify formally if these proper-
ties are preserved during the evolution of the system. We called the
extended formalism ”φDEVS”. Safety verification is made once
a ”φDEVS” model is translated to a formal specification using Z
notation by performing proof obligation.

Keywords
Safety, DEVS, Discrete Event Simulation , Z, Formal Methods,
Formal Verification

1. INTRODUCTION
The central assumption of a discrete event system is that the system
changes instantaneously in response to certain discrete events. Dis-
crete EVent System Specification (DEVS) formalism [1] permits
modeling and simulation (M&S) of discrete event systems.
By definition [2], the M&S system must model and predict the be-
havior of some real world entity. This problem has been called
“operational validation.” A second problem for M&S systems is
“conceptual model verification,” which is concerned with ensuring
that the model represents correctly the system description and does
not contain errors. Our approach deals with the second problem.
Hence, we offer for the DEVS users the possibility to describe the
safety properties and to check these properties by using formal ver-
ification techniques developed by formal methods community.
Formal methods (FM) [3] have shown a potential for detecting ma-
jor errors in system specification by applying a formal analysis.
FM are mathematical techniques for the specification, design and
analysis of complex systems. A formal specification is a system
description using a mathematical notation. A formal verification is
the use of a formal technique to check a formal specification: this
technique can be either model checking or theorem proving.
Formal methods have been used to a great degree in computer hard-
ware design. The two areas in which FMs have been used most

are security and safety applications. Foundation’02 [4] noted sig-
nificant progress, particularly with “lightweight” formal methods
(LFMs), and pointed out that FMs “may be the only approach ca-
pable of demonstrating the absence of undesirable system behav-
ior” [5]. However, FMs are not used as much as they could be in
modeling and simulation, in part because FMs can not catch the
whole aspects of complicated simulation models. In other part, it’s
difficult to use FMs and M&S in the same framework. Most of the
research, publications, and work in and with formal methods con-
tinue to occur outside the modeling and simulation communities.
The subject of this paper is to improve the DEVS conceptual model
by adding a component describing safety properties and conducting
a formal verification in order to verify that are preserved in all sys-
tem states before the simulation process. We will use the approach
developed in [6] wich consists of: (1) transforming a DEVS model
into an equivalent Z specification and (2) verifying the consistency
of the DEVS model on the resulting specification using the tools
developed by the Z community.

2. EXTENDING DEVS TO φDEVS
Lamport [7] defined a safety property called invariant property as
the following: “Something bad never happens.” Thus, a safety prop-
erty is a property which has to be satisfied whatever is the state of
the system. Hence, a conflict occurs when an invariant property is
violated.
Example:
propertyi: The system is always in motion.
propertyj: WHEN the system stops THEN the door has to be open.
propertyi is a safety property, propertyj contradicts propertyi, there-
fore there is a conflict.
The safety property guarantees the absence of an eventual conflict
in the specification. According to the Z community, “the invariant”
is the set of properties which must be satisfied whatever the state of
the system. In Z it is possible to verify if all operations preserve the
invariant by applying proof obligation.

2.1 Concept of invariant in Z
An invariant is a constraint that must always be satisfied: it defines a
relationship which is true in every state of the system and is main-
tained by every operation [8]. That is, given a sequential system,
defined with an initialization schema Init and a collection Op1,...,
Opn of operations, a predicate I is an invariant if Init⇒ I, and for

1

International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.8, December 2017

every i ∈ 1..k, I is preserved by the ith operation (that is, we have I
∧ Opi → I’). I should be added to the constraint part of the global
state schema. Such invariants can be important for a variety of rea-
sons:

—An analyst might wish to verify that the operations of a system
preserve some important safety properties.

—An implementor can take advantage of an invariant to simplify
an implementation. If, for example, x = y + z is an invariant,
then one of x , y, or z may be computed as needed rather than
stored explicitly in the state. If some sequence is always ordered,
efficient searching algorithms are possible.

2.2 The invariant in the DEVS formalism
The concept of invariant has not been adopted by the DEVS com-
munity. Thus if system requirements state that there is a condition
which has to be satisfied whatever the system state, this is tra-
duced by holding this condition on all atomic DEVS transitions
(see Fig. 1). Therefore, the model will be crowded because of con-
dition redundancy. In addition, the simulation time will increase
due to repetitive condition tests.

Fig. 1. Example of preserving a condition in all transitions

2.3 Extending DEVS to φDEVS
We propose a DEVS modelling framework which adopts the con-
cept of “the invariant,” i.e., conditions which have to be preserved
throughout the model evolution: we call this framework φDEVS.
This extended DEVS preserves the basic DEVS and provides a new
structure, which we call “φ,” to contain the conditions. That is, the
structure of φDEVS is:

φDEVS=¡ X, S, Y, δint, δext, λ, D, φ¿

where φ={P(s) | P is a Z formula involving a state s } .

2.4 The verification of safety properties in a φDEVS
model

Given a φDEVS (¡DEVS, φ¿) model, we apply the transformation
cited in Section ?? to extract the equivalent Z specification from the
basic DEVS model. Then we encode conditions of the φ structure
into the form of Z notation; the resulting conditions represent the
Z invariant. The latter is added into the constraint part of the state
schema of the Z package describing the DEVS model.

M
s : S

φ

We can check the coherency of the φDEVS model using proof obli-
gation on the resulting Z specification. The proof obligation con-
sists of:

—Proving the initial state, indeed if the initial state preserves the
state invariant, it is considered “true.” In our case, the Z formula
which permits to check such a state is:
Therorem canInit
∃M′ • InitM
This theorem permits us to check if the initial state of the φDEVS
model is valid.

—Preconditions calculation: this step permits of checking whether
all the operations of a Z package can be performed, i.e., whether
the operations preserve the invariant.

DEFINITION 1. Z provides a reference to the precondition
of an operation schema [8]; for a schema Op b ,[∆S; in? :
IN; out! : OUT] the schema reference pre Op is equivalent to ∃
S’; out! : OUT • Op, and describes the initial state for which
an output and a final state are possible. If the operation is to-
tal (does not depend on another operation to be performed), it
can be executed in any starting state and with any inputs; thus
∀ S; in?: IN • pre Op should be a theorem. Trying to prove this
conjecture can uncover any missing hypotheses. A correct pre-
condition theorem, of the form ∀ S; in? : IN | P • pre Op, where
P gives the precondition, can be a useful form of documentation
of a specification.

In our case, the Z formula which permits us to check the precon-
dition of an operation ′′op′′ resulting from δext:
Theorem CheckingPrecondition
∀M; in? : domainin? | in? = x∧s = source∧condsrc−trg•pre op

This theorem permits us to check if the corresponding external
transition is performed without violation of the invariant.
The Z formula which permits of checking the precondition of an
operation ′′op′′ resulting from δint and λ is:
Theorem CheckingPrecondition
∀M | s = source ∧ condsrc−trg • pre op
This theorem permits us to check if the corresponding internal
transition is performed without violation of the invariant.

We apply the theorems of the proof obligation already elaborated
by the Z community [8] on the resulting Z specification to verify
the invariant.
If card(φ) 6= 0, the DEVS simulator has to check the invariant con-
dition(s) in all DEVS model transitions. However, proof obligation
permits to avoid this redundancy and verify formally the consis-
tency of a φDEVS model by checking the consistency of the result-
ing Z specification.

3. SOFTWARE DESIGN FOR THE Z
TRANSFORMATION AND SAFETY
VERIFICATION PROCESS

We developed a tool which implements the algorithm of the trans-
formation and the verification of a φDEVS model: we call this tool
“φDEVS-Compiler” (see Fig. 2). Once φDEVS-Compiler reads a
φDEVS model saved in an XML file it generates another XML file

2

International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.8, December 2017

containing the equivalent Z specification and loads this file on Z
theorem prover and enables the checking process. Afterward, it re-
cuperates the analysis results and return them to the DEVS user. If
there are some conflicts in the model, the DEVS user can fix them
and verify the model again via φDEVS-Compiler. Once the model
is consistent (no conflicts in the model), the user proceeds to the
simulation process via the DEVS simulator.

Fig. 2. Formal verification of a φDEVS model with Z notation

3.1 φDEVS-Compiler design
φDEVS-Compiler is based on XSLT(eXtensible Stylesheet Lan-
guage Transformations) which is an XML-based language used for
the transformation of XML documents into other XML documents.
In our case, the source XML file saves a φDEVS model (Fig. 3) and
the resulting XML file saves the equivalent Z specification (Fig. 4).
We did not develop the whole trees for space reason. The transfor-
mation and the verification algorithms are given below.

Fig. 3. The tree of a DEVS XML file

3.1.1 Transformation algorithm. This algorithm concerns the
transformation of a φDEVS XML file into a Z file. It is described
by the algorithm 1.

Fig. 4. The tree of the Z XML file

3.1.2 Verification algorithm. Once the transformation is per-
formed, the φDEVS−Compiler proceeds to the verification process
which is described by the algorithm 2.

3.2 φDEVS-Compiler interface
The φDEVS interface is shown in Fig. 5. We integrated our tool
with LSIS DME. Therefore, once the DEVS user establishes the
model, invariant properties can be added by clicking on the “Add
Constraints” button: thus a frame will open. This frame contains a
text field to capture only one constraint. If the user wants to add a
new constraint, the “new constraint” button should be clicked on,
and then a new text field will appear. The user can also remove a
constraint by clicking on the “delete” button. Finally, when the user
has finished inserting all the constraints, the user should then click
on the “validate” button. The user can also compile the model by
clicking on the “φDEVS-Compiler” button. The compiling process
is described in the algorithms mentioned in the previous chapter.
It is divided into two steps, the first one is the transformation pro-
cess: the XML file saving the φDEVS model is transformed into
another XML file saving the equivalent Z specification, the second
one is the verification process: the resulting XML file is loaded in
the Z/EVES theorem prover [8] and verified using proving tech-
niques offered by this tool. The analysis results generated by the
compiling process are visualized for the user. When there are no
conflicts in the φDEVS model, i.e., this is traduced by writing “the
model is consistent” within the analysis results box, the user can go
to the simulation process to analyze the behavior of the model. We
offer the possibility of seeing the resulting Z specification on the
Z/EVES editor by clicking on the “Show Z spec” button (see Fig.
6). This button is disabled until enabling the “φDEVS-Compiler”
button. The results of proofs are shown in the second column on
the left. The status of each paragraph is shown in two columns to
the left of the paragraph. The leftmost column shows one of three
symbols:

—“?” indicates that the paragraph has not been checked.

—“Y” indicates that the paragraph has been checked and has no
syntax or type errors.

—“N” indicates that the paragraph has been checked and has errors.

This column permits checking that the transformation algorithm is
valid. In fact, it shows that the resulting Z specification and theo-
rems are correctly written and consistent with the Z notation.
The next column shows the proof status for the paragraph, using
one of three symbols

—“?” indicates that the paragraph has not been successfully
checked (so the proof status cannot be determined).

—“Y” indicates that the paragraph has no unproved goals.

—“N” indicates that the paragraph has an associated goal that is
unproven.

3

International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.8, December 2017

Fig. 5. φDEVS-compiler interface

This column permits checking the properties of the φDEVS model
described with Z theorems.
Z/EVES uses here the regular definition expansion technique
to rewrite the proofs, using the concerned state and operation
schemas. Then it simplifies the calculation by putting all conditions
at the same level (i.e., removing the local existential quantifiers)
and replacing the dotted variables by their values.

Fig. 6. The resulting Z specification appeared on the Z/EVES editor

4. CONCLUSION AND FUTURE WORK
This paper contributes to works dealing with the improvement of
the V&V of simulation models via the integration of FM. Our goal

was to extend DEVS framework to φDEVS in order to support
safety properties modeling and verfication. φDEVS model could
be translated to Z specification, then Z tools could be therefore
used to verify the model consistency by checking wether the
safety properties are preserved. This kind of verification is called
proof obligation. We developed a tool automating the verification
of safety properties, we call it φDEVS − Compiler. As known
in software engineering, assertions are used to avoid programs
to use insignificant tests that increase running time [9] [10].
Logically, it seems that our apporach which checks assertions
using φDEVS − Compiler, reduces significantly the simulation
time. We plan to extend our approach in order to verify other
properties, such as liveness property which means ”something
good must happen” [7].

5. REFERENCES
[1] B. Zeigler. Theory of Modelling and Simulation. Robert F.

Krieger Publishing, 1976.
[2] D. R. Kuhn, D. Craigen, and M. Saaltink. Practical appli-

cation of formal methods in modeling and simulation. In
SCSC’03, 2003.

[3] M. Clarke and M. Wing. Formal methods: State of the art and
future directions. ACM Computing Surveys (CSUR), Decem-
ber 1996.

[4] In a Workshop on Model and Simulation Verification and Val-
idation for the 21st Century, Laurel, MD, CD-ROM. The So-
ciety for Modeling and Simulation, 2002.

[5] D. R. Kuhn, M. Chandramouli, and R. W. Butler. Cost ef-
fective use of formal methods in verification and validation.
In Proc. Workshop on Foundations for M&S and V&V in the
21st Century, SCS, San Diego, CA, 2002.

4

International Journal of Computer Applications (0975 - 8887)
Volume 180 - No.8, December 2017

Algorithm 1: transformation algorithm
STEP 1. Creation of the Z file

(1) CREATE a Z file for writing the Z specification corresponding
the φDEVS model.

STEP 2. Free types definition

(2) CREATE zed-box node:
PHASE ::= ”FOR EACH phase node WRITE phase.name |”

(3) GO TO S var (states variables) node:
IF S var.type = finite set
THEN Creating zed-box node (Free type definition of the finite
set)

(4) GO TO Input var (Input variables) node:
IF Input var.type = finite set
THEN Creating zed-box node (Free type definition of the finite
set)

(5) GO TO Output var (Output variables) node:
IF Output var.type = finite set
THEN Creating zed-box node (Free type definition of the finite
set)

STEP 3. Creation of the abstract state

(6) CREATE schema-box node:
name = ”φDEVS.name”
decl-part = ” FOR EACH S var node WRITE
S var.name : S var.type”
ax-part = ”φDEVS.φ”

STEP 4. Creation of the initializing operation schema

(7) GO TO phase node WHERE phase.type= ”Initial”
(8) CREATE schema-box node:

name = ”Initializing φDEVS.name”
decl-part = ” φDEVS.name’”
ax-part = ”phase.actions”

STEP 5. Creation of operations schemas from external
transitions

(9) FOR EACH δext node CREATE schema-box node:
name = source.phase.name-target.phase.name
decl-part = ” ∆ φDEVS.name
InEvent? : Inport var.InEvent.type”
ax-part = ” InEvent? = InVal
FOR EACH S var node WRITE
S var.name = Source.S var.val
Cond
FOR EACH S var node WRITE
S var.name’ = Target.S var.val”

[6] W. Trojet and T. Berradia. System reliability using simulation
models and formal methods. International Journal of Com-
puter Applications, 132(17):1–8, December 2015. Published
by Foundation of Computer Science (FCS), NY, USA.

[7] L. Lamport. Proving the correctness of multiprocess pro-
grams. IEEE Transactions on software engineering, March
1977.

[8] M. Saaltink. The Z/EVES 2.0 User’s Guide. TR-99-5493-06a.
ORA Canada, 1999.

[9] K. Mughwal and R. Rasmussen. A programmer’s guide to

STEP 6. Creation the operations schemas from internal
transitions and output functions

(10) FOR EACH δint node AND
IF ∃ λ node WHERE λ .source=δint.source THEN
CREATE schema-box node:
name = source.phase.name-target.phase.name
decl-part = ” ∆ φDEVS.name
OutEvent! : Outport var.OutEvent.type”
ax-part = ” FOR EACH S var node WRITE
S var.name = Source.S var.val
Cond
FOR EACH S var node WRITE
S var.name’ : Target.S var.val”
OutEvent!=OutVal”
ELSE lines containing outEvent! are deleted.

Algorithm 2: verification algorithm
STEP 1. Proof obligation

(1) CREATE theorem-def node :
decl-part = ”canInit”
ax-part = ” ∃ φDEVS.name’ • InitφDEVS.name ”

(2) FOR EACH δext and δint node CREATE theorem-def node:
decl-part = ” theorem name”
ax-part = ” pre-condition theorem”

Java scjp certification (chapter 6 section 10). Addison wesley,
third edition, december 2008.

[10] D. Rosenblum. A practical approach to programming with
assertions. IEEE TRANSACTIONS ON SOFTWARE ENGI-
NEERING, 21, january 1995.

5

	Introduction
	Extending DEVS to DEVS
	Concept of invariant in Z
	The invariant in the DEVS formalism
	Extending DEVS to DEVS
	The verification of safety properties in a DEVS model

	Software design for the Z transformation and safety verification process
	DEVS-Compiler design
	Transformation algorithm
	Verification algorithm

	DEVS-Compiler interface

	Conclusion and future work
	References

