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ABSTRACT
In this paper, a novel solution approach for solving the non-
linear programming (NLP) problems having m nonlinear alge-
braic inequality (equality or mixed) constraints with a nonlin-
ear algebraic objective function in n variables using lineariza-
tion technique is presented. This approach performs successive
increments to find a solution of the NLP problem, based on the
optimal solutions of linear programming (LP) problems, satis-
fying the nonlinear constraints oversensitively. In the proposed
approach, the original problem is converted to the LP prob-
lem using increments in the linearization process and the im-
pact of computational efficiency makes the performance of the
solution well. It is presented that how the solution approach can
be applied to solve the illustrated examples from the literature.
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1. INTRODUCTION
Constructing a mathematical model for real life problems is an im-
portant issue in optimization theory. Optimization problems can be
classified according to the nature of the objective function and con-
straints. An optimization problem can be defined as min (or max) of
a single (or multi) objective function, subject to (or not to) single (or
multi) nonlinear (or linear) inequality (or equality or mixed) con-
straints. If all objective function(s) and constraint(s) are linear, then
the problem is known LP problem. NLP problems are a special ver-
sion of LP, i.e., the objective function and/or constraint(s) are non-
linear, that is called general NLP problems. LP or NLP problems
optimize the objective function(s) subject to finite number of con-
straints, considering whether subject to non-negativity constraints
or not.

There is no effective method for solving the general NLP problems
like simplex method in LP. When the number of variables or con-
straints increases, solving NLP problems numerically needs huge
computational efforts by using special optimization algorithms [6].
Since 1951, there has been great progress for solving NLP prob-
lems. Hestenes [9] proposed augmented Lagrangian methods for
solving equality constrained problems. This approach was extended
in [12] to the constrained optimization problem with both equality
and inequality constraints. Sannomiya et al. [13] proposed an ef-
fective method even if there is no feasible solution satisfying the
approximate linear constraints.
Linearization methods can be used converting a NLP problem into
a LP problem. In this process, extra variables and constraints are in-
troduced to construct the original problem. Various methods have
been proposed in the literature by linearizing a NLP problem [14],
[11]. Sequential Linear Programming (SLP) which is one of the
direct methods solves NLP problems approximately, and uses a se-
ries of LP problems generated by using first order Taylor series
expansions of objective functions and constraints. Byrd and No-
cedal [3] have presented a new active-set, trust-region algorithm
for large-scale optimization using SLP techniques to solve the NLP
problems approximately.
Sequential Quadratic Programming (SQP) is first proposed by Wil-
son in his PhD thesis in 1963 for solving constrained NLP prob-
lems. Many research papers have been produced using SQP-based
techniques .Gill and Wong [7] reviewed some of the most promi-
nent developments in SQP. An improved SQP algorithm with ar-
bitrary initial iteration point for solving a class of general NLP
problems with equality and inequality constraints is proposed in
[8]. Conjugate-gradient methods (CG) are used to solve large-
dimensional problems that arise in computational linear or non-
linear optimization problem. The linear CG method for solving
the system of linear n equations in n unknowns was developed in
[10].The method did not compete with direct method, Gauss elim-
ination, but it is used in real-world applications. Albayrak et al. [1]
proposed an iterative approach for solving the NLP problems hav-
ing n nonlinear (or linear) algebraic equality constraints with non-
linear (or linear) algebraic objective function in n + 1 variables.
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This iterative approach constructs different optimization problems
corresponding to the parameter related with arbitrary points which
are chosen satisfying the constraints.
In this paper, a novel solution approach for solving general NLP
problems, having m nonlinear (or linear) algebraic inequality (or
equality or mixed) constraints with nonlinear (or linear) objective
function in n variables is presented. The original problem is con-
verted to the LP problem using increments in the linearization pro-
cess and the impact of computational efficiency makes the perfor-
mance of the solution well.
This paper is organized as follows: Section 2 presents brief required
information used in this work. In Section 3, the proposed approach
is handled. Section 4 and Section 5 consist of numerical examples
and conclusions, respectively.

2. PRELIMINARIES
In this section, required information is presented.

DEFINITION 1. A general constrained NLP problem can be de-
fined as follows:

min f(x)
s.t.
gi(x) = bi, i = 1, 2, ..., p
gj(x) ≤ bj , j = p+ 1, ...,m

(1)

where x = [x1, x2, ..., xn] ∈ Rn is a vector, gi : Rn → R, (i =
1, 2, ..., p), gj : Rn → R, (j = p + 1, ...,m). In (1), if the ob-
jective function and all constraints are linear, it is known as an LP
problem.

DEFINITION 2. [5] Any point x satisfying the constraints is
called the feasible point. The set of all feasible points is called
the feasible set such that X = {x ∈ Rn : gi(x) = bi, (i =
1, 2, ..., p), gj(x) ≤ bj , (j = p+ 1, ...,m)}.

DEFINITION 3. An optimal solution x∗ to a LP problem is a
feasible solution with the smallest objective function value for a
minimization problem.

DEFINITION 4. A point x in the feasible set X is said to be an
interior point if X contains some neighborhood of x.

DEFINITION 5. After converting NLP problem to LP problem,
the obtained solution is called a linearization point.

3. THE PROPOSED APPROACH
A novel solution approach for solving general NLP problems, hav-
ing m nonlinear (or linear) algebraic inequality (or equality or
mixed) constraints with nonlinear (or linear) objective function in
n variables is presented. The iterations present reasonable progress
to convert the NLP problem using successive linearization process
by means of Taylor series expansions.

Step 1 Load the NLP problem having m nonlinear constraints with a
nonlinear objective function in n variables as given in (1).

Step 2 Construct Lagrangian function

L(xk, λi, λj) = f(xk) +
∑

i
λi(gi(xk)− bi)

+
∑

j
λj(gj(xk)− bj)

(2)

where k = 1, ..., n; i = 1, 2, ..., p; j = p+ 1, ...,m.

Step 3 Construct a nonlinear system obtained from (2).
∂L
∂xk

= 0, k = 1, ..., n
∂L
∂λi

= 0, i = 1, ..., p

λj(gj(x1, ..., xn)− bj) = 0, j = p+ 1, ....,m

(3)

Step 4 Choose any initial arbitrary nonzero point (xk, λi, λj), k =
1, ..., n; i = 1, ..., p; j = p+ 1, ...,m.

Step 5 Linearize each equation in (3) by expanding Taylor series at
the chosen point.

Step 6 Construct a linear system as follows:[
∂L
∂xk

]
L

= 0, k = 1, ..., n[
∂L
∂λi

]
L

= 0, i = 1, ..., p[
λj(gj(x1, ..., xn)− bj)

]
L

= 0, j = p+ 1, ....,m

(4)

where the subscript L is used to show the linearization, and
solve the system in (4).

Step 7 Analyze the solution of the system in (4):
If there is a solution as x̄ = (x̄1, ..., x̄n), go to Step 8.
Else, go to Step 4.

Step 8 Check the types of constraint of (1):
If they are mixed or equality constraints, go to Step 9.
If they are inequality constraints, go to Step 13.

Step 9 Linearize each equation in (3) by expanding Taylor series at x̄.
Step 10 Solve the reconstructed linear system.
Step 11 Analyze the solution obtained in Step 10:

If there is a solution as x = (x1, ..., xn) , go to Step 12.
Else, go to Step 4.

Step 12 Check successive two objective function values:
For a given ε > 0 if |f(x̄)−f(x)| ≤ ε, then it is a solution
of the NLP problem in (1) and STOP.
Else, assign x to x̄, and go to Step 9.

Step 13 Check the solution x̄:
If it satisfies all constraints of (1) individually, go to Step
14.
Else, linearize each equation in (3) by expanding Taylor
series at x̄, and go to Step 6.

Step 14 Introduce new variables x̂ = (x̂1, ..., x̂n) by making incre-
ments

x̂k = x̄k + uk − vk (5)

where uk, vk, (k = 1, ..., n) are nonnegative variables defined
as 0 ≤ uk ≤ 1 and 0 ≤ vk ≤ 1.

Step 15 Substitute x̂ generated in (5) into objective function and con-
straints of (1).

Step 16 Linearize new objective function and each constraint obtained
in Step 15 by expanding Taylor series.

Step 17 Construct a LP problem by adding new constraints

min fL(u1, ..., un, v1, ..., vn)
s.t.
gLj(u1, ..., un, v1, ..., vn) ≤ bj , j = p+ 1, ....,m
0 ≤ uk ≤ 1, k = 1, ..., n
0 ≤ vk ≤ 1, k = 1, ..., n

(6)

and solve (6).
Step 18 Check the solution of (6):

If there is a feasible solution, go to Step 19.
Else, go to Step 4.

Step 19 Analyze the increments:
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If all u, v are zero, x̂ is a solution for the NLP problem (1)
and STOP.
Else, determine x̂. Assign x̂ to x̄, and go to Step 14.

The flow chart of the proposed approach is given in Figure1.

Fig. 1. The flow chart of the proposed approach

4. NUMERICAL EXAMPLES
Example 1 [2] Solve the NLP problem

min (x1 − 2)2 + (x2 − 2)2

s.t.
x21 + x22 − 1 = 0
x22 − x1 ≤ 0

(7)

using the proposed approach where ε = 10−5.
Step 1-2. Load the NLP problem (7) and construct Lagrangian
function:

L(x1, x2, λ1, λ2) = (x1 − 2)2 + (x2 − 2)2

+λ1(x21 + x22 − 1) + λ2(x22 − x1).
(8)

Step 3. Construct the following nonlinear system obtained from (8).

2(x1 − 2) + 2λ1x1 − λ2 = 0
2(x2 − 2) + 2λ1x2 + 2λ2x2 = 0
x21 + x22 − 1 = 0
λ2(x22 − x1) = 0.

(9)

Step 4. Choose any initial arbitrary nonzero point: x1 = 3, x2 =
3, λ1 = 1, λ2 = 1.
Step 5-6. Linearize each equation in (9) by expanding Taylor series
at chosen point, and construct the following linear system.

4x1 + 6λ1 − λ2 = 10
6x2 + 6λ1 + 6λ2 = 16

6x1 + 6x2 = 19
−x1 + 6x2 + 6λ2 = 15

(10)

Step 7.The solution of (10) is obtained as x1 = 4.5455, x2 =
−1.3788, λ1 = −0.5909, λ2 = 4.6364.
Summarized results of Example 1 using the proposed approach
is given in Table 1. Basirzadeh also solved this problem in [2].
The comparison of solutions is presented in Table 2. The optimal
solution obtained by the proposed approach satisfies the equality
constraint of (7) oversensitively, however it is not verified with
Basirzadeh’s solution.

Table 1. Iteration Results of Example 1
Iterations x1 x2 f(x1, x2)

1st 4.5455 -1.3788 17.8959
2nd 2.385 -0.682 7.3413
3rd 1.8908 1.3679 0.4115
4th 1.6591 0.063 3.8682
5th 1.0905 1.0966 1.6433
6th 0.5921 0.9577 3.0686
7th 0.633 0.7926 3.3265
8th 0.6182 0.7862 3.3827
9th 0.6181 0.7861 3.3832
10th 0.6181 0.7861 3.3832

Table 2. The Comparison of Solutions of
Example 1

Basirzadeh’s Approach Proposed Approach
x1 0.7070 0.6181
x2 0.7070 0.7861
z 3.3437 3.3832

Optimal solution of the NLP problem (9) is x∗1 = 0.6181, x∗2 =
0.7861 and the optimal value is z∗ = 3.3832.
Example 2 [4] Solve the NLP problem

max 3x31 + 2x32
s.t.
x21 + x22 − 16 ≤ 0
x1 − x2 − 3 ≤ 0

(11)

using the proposed approach where ε = 10−5.
Step 1-2. Load the NLP problem (11) and construct Lagrangian
function:

L(x1, x2, λ1, λ2) = −3x31 − 2x32 + λ1(x21 + x22 − 16)

+λ2(x1 − x2 − 3).
(12)
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Step 3. Construct the following nonlinear system obtained from
(12).

−9x21 + 2λ1x1 + λ2 = 0
−6x22 + 2λ1x2 − λ2 = 0
λ1(x21 + x22 − 16) = 0
λ2(x1 − x2 − 3) = 0.

(13)

Step 4. Choose any initial arbitrary nonzero point: x1 = 5, x2 =
1, λ1 = 1, λ2 = 2.
Step 5-6. Linearize each equation in (13) by expanding Taylor se-
ries at chosen point, and construct the following linear system.

88x1 − 10λ1 − λ2 = 215
10x2 − 2λ1 + λ2 = 4

10x1 + 2x2 + 10λ1 = 52
2x1 − 2x2 + λ2 = 8

(14)

Step 7.The solution of (14) is obtained as

x1 = 2.75, x2 = 0.5161, λ1 = 2.3468, λ2 = 3.5323. (15)

Step 8-13. Check if the solution obtained in (15), providing all the
constraints in (11).
It is seen that this solution satisfies the constraints individually.
Step 14. Introduce new variables x̂1, x̂2 by making increments

x̂1 = 2.75 + u1 − v1
x̂2 = 0.5161 + u2 − v2 (16)

where u1, u2, v1, v2 are nonnegative variables.
Step 15-17. Substitute x̂1, x̂2 generated in (16) into objective func-
tion and constraints of (11), linearize new objective function and
each constraint by expanding Taylor series, and construct the fol-
lowing LP problem by adding new constraints

max 68.0625(u1 − v1) + 1.5982(u2 − v2)
5.5(u1 − v1) + 1.0322(u2 − v2) ≤ 8.1711
(u1 − v1)− (u2 − v2) ≤ 0.7661
0 ≤ u1 ≤ 1; 0 ≤ u2 ≤ 1
0 ≤ v1 ≤ 1; 0 ≤ v2 ≤ 1

(17)

and solve (17).
Step 18-19. The solution of (17) is u1 = 1, v1 = 0, u2 = 1, v2 =
0. Because u1, u2, v1, v2 are different from zero, x̂1 = 3.75, x̂2 =
1.5161 are determined. x̂1, x̂2 are assigned to x̄1 = 3.75, x̄2 =
1.5161, respectively. Then, go to Step 14. Until all u1, v1, u2, v2
become zero, the process is continued from Step 14 to Step 19.
The proposed approach is applied to the problem solved in [4]. The
approach is more efficient than Chiş and Cret’s approach for max-
imizing (11). Summarized results and the comparison of solutions
are shown in Table 3 and Table 4, respectively.

Table 3. Iteration Results of Example 2
Iterations x1 x2 f(x1, x2)

1st 3.75 1.5161 165.1728
2nd 3.9363 0.9363 184.6141
3rd 3.8982 0.8982 179.16
4th 3.8979 0.8979 179.1175
5th 3.8979 0.8979 179.1175

Optimal solution of the NLP problem (11) is x∗1 = 3.8979, x∗2 =
0.8979 and the optimal value is z∗ = 179.1175.

Table 4. The Comparison of Solutions of Example 2
Chis and Cret’s Approach Proposed Approach

x1 3.875 3.8979
x2 0.875 0.8979
z 175.8965 179.1175

5. CONCLUSION
In this paper, a novel solution approach for solving general NLP
problems, having m nonlinear (or linear) algebraic inequality (or
equality or mixed) constraints with nonlinear (or linear) objective
function in n variables is presented. This solution approach is ap-
plied according to structure of constraints:

This approach performs successive LP problems using incre-
ments after solving linear system(s) obtained from Lagrangian
function to find a solution of the NLP problem subject to in-
equality constraints.

This approach also finds a solution of the NLP problem un-
der mixed or equality constraints. The solution is based on the
solutions of linear systems obtained from Lagrangian function.

After performing linearization approach at any initial arbitrary
nonzero point for each type of structure of constraints, the obtained
solution of the original NLP problem satisfies the constraints sen-
sitively while making the objective function min or max.
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