We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Separation Modeling of Blood Cells using Dielectrophoretic Field Flow

by Ayat Nada, Mohamed Omar, Ahmed M. Sayed
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 181 - Number 33
Year of Publication: 2018
Authors: Ayat Nada, Mohamed Omar, Ahmed M. Sayed
10.5120/ijca2018918275

Ayat Nada, Mohamed Omar, Ahmed M. Sayed . Separation Modeling of Blood Cells using Dielectrophoretic Field Flow. International Journal of Computer Applications. 181, 33 ( Dec 2018), 36-41. DOI=10.5120/ijca2018918275

@article{ 10.5120/ijca2018918275,
author = { Ayat Nada, Mohamed Omar, Ahmed M. Sayed },
title = { Separation Modeling of Blood Cells using Dielectrophoretic Field Flow },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2018 },
volume = { 181 },
number = { 33 },
month = { Dec },
year = { 2018 },
issn = { 0975-8887 },
pages = { 36-41 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume181/number33/30206-2018918275/ },
doi = { 10.5120/ijca2018918275 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T01:08:16.878998+05:30
%A Ayat Nada
%A Mohamed Omar
%A Ahmed M. Sayed
%T Separation Modeling of Blood Cells using Dielectrophoretic Field Flow
%J International Journal of Computer Applications
%@ 0975-8887
%V 181
%N 33
%P 36-41
%D 2018
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Improving the ability to separate particles and cells in a continuous flow pattern facilitates faster and incessant medical diagnosis. In this paper, a modified design is presented that is capable of separating platelet cells from other blood cells in a continuous flow. The modified device achieves the separation of platelets using Dielectrophoretics (DEP) mechanism. A two dimensional finite element model was exploited to test different design parameters, including the applied separation peak to peak voltage, frequency, and speed of the flow inlet. Simulations of the modified microfluidic device showed successful separation of the red blood cells from platelets and also from other mixed blood cells. The modeling and simulation results demonstrate that cell separation can be achieved with high purity levels of platelets of up to 99.8%. The device’s optimized technology makes it suitable for portable, bedside and point-of-care testing applications.

References
  1. D. F. Stroncek and P. Rebulla, “Platelet transfusions,” Lancet, vol. 370, no. 9585, pp. 427–438, 2007.
  2. S. J. Slichter and L. A. Harker, “Preparation and Storage of Platelet Concentrates,” Transfusion, vol. 16, no. 1, pp. 8–12, 1976.
  3. H. K. Lin et al., “Portable filter-based microdevice for detection and characterization of circulating tumor cells,” Clin. Cancer Res., vol. 16, no. 20, pp. 5011–5018, 2010.
  4. L. Basabe-Desmonts et al., “Single-step separation of platelets from whole blood coupled with digital quantification by interfacial platelet cytometry (iPC),” Langmuir, vol. 26, no. 18, pp. 14700–14706, 2010.
  5. A. Lenshof and T. Laurell, “Continuous separation of cells and particles in microfluidic systems,” Chem. Soc. Rev., vol. 39, no. 3, p. 1203, 2010.
  6. G. Dainiak, Maria B.Plieva, Fatima, “Cell Chromatography: Separation of Different Microbial Cells Using IMAC Supermacroporous Monolithic Columns,” Biotechnol. Prog., vol. 21, no. 2, pp. 644–649, 2005.
  7. “Cell Sorting : Automated Separation of Mammalian Cells as a Function of Intracellular Fluorescence Author ( s ): H . R . Hulett , W . A . Bonner , Janet Barrett and Leonard A . Herzenberg Published by : American Association for the Advancement of Science ,” vol. 166, no. 3906, pp. 747–749, 2016.
  8. P. Yager et al., “Microfluidic diagnostic technologies for global public health,” Nature, vol. 442, no. 7101, pp. 412–418, 2006.
  9. W. A. Bonner, H. R. Hulett, R. G. Sweet, and L. A. Herzenberg, “Fluorescence activated cell sorting,” Rev. Sci. Instrum., vol. 43, no. 3, pp. 404–409, 1972.
  10. D. C. Colter, I. Sekiya, and D. J. Prockop, “Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells,” Proc. Natl. Acad. Sci., vol. 98, no. 14, pp. 7841–7845, 2001.
  11. R. David, M. Groebner, and W.-M. Franz, “Magnetic Cell Sorting Purification of Differentiated Embryonic Stem Cells Stably Expressing Truncated Human CD4 as Surface Marker,” Stem Cells, vol. 23, no. 4, pp. 477–482, 2005.
  12. E. A. Jones et al., “Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells,” Arthritis Rheum., vol. 46, no. 12, pp. 3349–3360, 2002.
  13. P. Yager, G. J. Domingo, and J. Gerdes, “Point-of-Care Diagnostics for Global Health,” Annu. Rev. Biomed. Eng., vol. 10, no. 1, pp. 107–144, 2008.
  14. B. Weigl, G. Domingo, P. LaBarre, and J. Gerlach, “Towards non- and minimally instrumented, microfluidics-based diagnostic devices,” Lab Chip, vol. 8, no. 12, p. 1999, 2008.
  15. C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: Past studies and future opportunities,” Lab Chip, vol. 7, no. 1, pp. 41–57, 2007.
  16. Y. Zhang, S. Park, S. Yang, and T. H. Wang, “An all-in-one microfluidic device for parallel DNA extraction and gene analysis,” Biomed. Microdevices, vol. 12, no. 6, pp. 1043–1049, 2010.
  17. Y. Zhang, S. Park, K. Liu, J. Tsuan, S. Yang, and T.-H. Wang, “A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification,” Lab Chip, vol. 11, no. 3, pp. 398–406, 2011.
  18. J. G. E. Gardeniers and A. Van Den Berg, “Lab-on-a-chip systems for biomedical and environmental monitoring,” Anal. Bioanal. Chem., vol. 378, no. 7, pp. 1700–1703, 2004.
  19. S. A. Soper et al., “Point-of-care biosensor systems for cancer diagnostics/prognostics,” Biosens. Bioelectron., vol. 21, no. 10, pp. 1932–1942, 2006.
  20. A. J. Tüdős, G. A. J. Besselink, and R. B. M. Schasfoort, “Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry,” Lab Chip, vol. 1, no. 2, pp. 83–95, 2001.
  21. A. A. H. Sayed, N. Solouma, Y. M. Kadah, “Modeling Intrastromal Photorefractive Keratectomy Procedures”, Cairo International Biomedical Engineering Conference, CIBEC, Cairo 2008.
  22. A. A. H. Sayed, N. Solouma, A. El-Berry, Y. M. Kadah, “Finite Element Models for Computer Simulation of Intrastromal Photorefractive Keratectomy”, Journal of Mechanics in Medicine and Biology, JMMB, Vol. 11, 4, 2011.
  23. M. M. Elramady, A. M. Sayed, M. A. Awadalla, F. S. Mohamed and T. M. Nassef, “Measuring Primary Stability for the Inclined Implants Retaining Mandibular Overdenture using Resonance Frequency”, Cairo International Biomedical Engineering Conference, CIBEC, Cairo 2014.
  24. M. U. Hamzah, A. M. Sayed and T. M. Nassef, “Computer Assisted Validation of using Newly Introduced Thermoplastic Material in Fabrication of a Telescopic Denture”, International Journal of Computer Applications, IJCA, Vol. 181, 15, PP. 16-20, 2018.
  25. N. Piacentini, G. Mernier, R. Tornay, and P. Renaud, “Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation,” Biomicrofluidics, vol. 5, no. 3, 2011.
  26. R.Tornay, T. Braschler, N. Demierre, et al., “Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles.,” Appl. Opt., vol. 8, no. 2, pp. 267–273, 2008.
  27. R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics, vol. 4, no. 2, pp. 1–35, 2010.
  28. B. Sepúlveda et al., “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A Pure Appl. Opt., vol. 8, no. 7, pp. S561–S566, 2006.
  29. K. Tatsumi, K. Kawano, H. Okui, H. Shintani, and K. Nakabe, “Analysis and measurement of dielectrophoretic manipulation of particles and lymphocytes using rail-type electrodes,” Med. Eng. Phys., vol. 38, no. 1, pp. 24–32, 2016.
  30. Sayed AM, Zaghloul E, Nassef TM., "Automatic Classification of Breast Tumors Using Features Extracted from Magnetic Resonance Images", Procedia Computer Science, Vol. 95, PP. 392-8, 2016.
  31. Haider Ali, Cheol Woo Park. "Numerical study on the complete blood cell sorting using particle tracing and dielectrophoresis in a microfluidic device", Korea- Australia Rheology Journal, 2016
Index Terms

Computer Science
Information Sciences

Keywords

Microfluidics Dielectrophoretics Finite Element Model Blood cell Separation Platelets(PLTs).