Avoiding Objects with few Neighbors in the K-Means Process and Adding ROCK Links to Its Distance

Abstract

K-means is considered as one of the most common and powerful algorithms in data clustering, in this paper we're going to present new techniques to solve two problems in the K-means traditional clustering algorithm, the 1st problem is its sensitivity for outliers, in this part we are going to depend on a function that will help us to decide if this object is an outlier or not, if it was
Avoiding Objects with few Neighbors in the K-Means Process and Adding ROCK Links to Its Distance

an outlier it will be expelled from our calculations, that will help the K-means to make good results even if we added more outlier points; in the second part we are going to make K-means depend on Rock links in addition to its traditional distance, Rock links takes into account the number of common neighbors between two objects, that will make the K-means able to detect shapes that can't be detected by the traditional K-means.

Reference

- Sudipto Guha, Rajeev Rastogi, Kyuseok Shim, ROCK: A Robust Clustering Algorithm for Categorical Attributes.
- Wesam Barbakh, Similarity Graphs.
- Xiaochuan Wu and Colin Fyfe, On initializing prototypes for clustering.
Avoiding Objects with few Neighbors in the K-Means Process and Adding ROCK Links to Its Distance

Index Terms

Computer Science
Data Mining

Key words

Robust K-means
Rock links
Initializing K-means electing centroids

Optimizing K-means distance measurement