Abstract

The mathematical model of immobilized enzyme system in porous spherical particle is presented. The model is based on non-stationary diffusion equation containing a nonlinear term related to Michaelis-Menten kinetics of the enzymatic reaction. A general and closed form of an analytical expression pertaining to the substrate concentration profile and effectiveness factor
are reported for all possible values of dimensionless modules and . Moreover, herein we have employed “Homotopy Perturbation Method” (HPM) to solve the non-linear reaction/diffusion equation in immobilized enzymes system. These analytical results were found to be in good agreement with simulation result.

Reference

- Ramachandran, P. A. (1975) Solution of immobilized enzyme problems by collocation
methods, Biotechnol. Bioeng. 17, 211-226
 Evaluation of the effectiveness factor along immobilized enzyme fixed-bed reactors: design for a
 reactor with naringinase covalently immobilized into glycophase-coated porous glass,
 - Bodalo Santoyo, A., G´omez Carrasco, J.L., G´omez G´omez, E., Bastida Rod´ıguez, J.,
 Mart´ınez Morales, E. (1993) Transient stirred tank reactors operating with immobilized enzyme
 systems: analysis and simulation models and their experimental checking, Biotechnol. Progr. 9,
 166–173.
 reactors operating with immobilized enzyme systems: design model and its experimental
 inhibition on a simulated immobilized enzyme-catalyzed reactor for lactose hydrolysis, Biochem.
 mass transfer and product inhibition on immobilized enzymecatalyzed reactor, Biochem. Eng. J.
 27, 167–178.
 York.
 132(6), 061001.
 - Gomez Carrasco, J. L., Bodalo Santoyo, A., Gomez Gomez, E., Bastida Rodriguez, J.,
 effectiveness factors for immobilized enzymes with reversible Michaelis-Menten kinetics,
 Analysis of diffusion effects on immobilized enzyme on porous supports with reversible
 - He, J. H. (2008) An elementary introduction to recently developed asymptotic methods
 - He, J. H. (2005) Application of homotopy perturbation method to nonlinear wave

Index Terms

Computer Science

Applied Sciences

Key words

Diffusion-Reaction

Immobilised Enzymes

Modelling

Homotopy perturbation method

Biosensors

Michaelis-Menten kinetics

Effectiveness factor