Call for Paper - November 2014 Edition
IJCA solicits original research papers for the November 2014 Edition. Last date of manuscript submission is October 20, 2014. Read More

Novel Application of Multi-Layer Perceptrons (MLP) Neural Networks to Model HIV in South Africa using Seroprevalence Data from Antenatal Clinics

Print
PDF
International Journal of Computer Applications
© 2011 by IJCA Journal
Volume 35 - Number 5
Year of Publication: 2011
Authors:
Wilbert Sibanda
Philip Pretorius
10.5120/4398-6106

Wilbert Sibanda and Philip Pretorius. Article: Novel Application of Multi-Layer Perceptrons (MLP) Neural Networks to Model HIV in South Africa using Seroprevalence Data from Antenatal Clinics. International Journal of Computer Applications 35(5):26-31, December 2011. Full text available. BibTeX

@article{key:article,
	author = {Wilbert Sibanda and Philip Pretorius},
	title = {Article: Novel Application of Multi-Layer Perceptrons (MLP) Neural Networks to Model HIV in South Africa using Seroprevalence Data from Antenatal Clinics},
	journal = {International Journal of Computer Applications},
	year = {2011},
	volume = {35},
	number = {5},
	pages = {26-31},
	month = {December},
	note = {Full text available}
}

Abstract

This paper presents an application of Multi-layer Perceptrons (MLP) neural networks to model the demographic characteristics of antenatal clinic attendees in South Africa. The method of cross-validation is used to examine the between-sample variation of neural networks for HIV prediction. MLP neural networks for classifying both the HIV negative and positive clinic attendees are developed and evaluated using validity and reliability of the test. Neural networks are robust to sampling variations in overall classification performance.

References

  • Efron B., Gong G. 1983. A leisurely look at the bootsrap, the jackknife and cross-validation. American Statistician. vol. 37, 36-48.
  • Patel J.L, Goyal R.K. 2007. Applications of artificial neural networks in medical science. Curr Clin Pharmacol. (Sep. 2007), 2(3), 217-26.
  • Trentin E. and Freno A. 2009. Unsupervised nonparametric density estimation: A neural network approach. Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA. (Jun. 2009), 14-19.
  • UNAIDS. 2009. AIDS Epidemic Update, www.unaids.org
  • World Health Organization (WHO) and the Joint United Nations Programme. Guidelines for measuring national HIV prevalence. UNAIDS/WHO Working Group on Global HIV/AIDS and STI surveillance
  • Zimmermann H.G., Minin A. and Kusherbaeva A. 2011. Comparison of the complex valued and real valued neural networks trained with gradient descent and random search algorithms. ESANN 2011 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 27-29 April 2011.