Abstract

From last decades the objective of Power quality (PQ) monitoring and analysis has drastically. Generally the power quality problem covers the time scales range from tens of nanoseconds to steady state to describe different events. Well discussed in various international standards (IEEE, IEC, EN etc) and also give various acceptability curves to quantify and classify different Power Quality phenomenon (CIBMA and ITC) according to amplitude and time frame. It is observed that different tools and methods are always been used to detect and classify the power Quality events. The whole advance tends to process the raw data and extract the information in order to make decision. And further move towards real time monitoring, protection and control. This paper presents a comprehensive review of different techniques based on wavelet transform to detect and classify power quality problems.

References

C. Sidney Burrus, Ramesh A. Gopinath, and Haitao Guo, 'Introduction to wavelet and wavelet transform', Prentice Hall publication.

Wei Liao, Hua Wang, Pu Han, 'Neural network based detection and recognition method for power quality disturbance', Control and Decision Conference (CCDC), 2010 Chinese.

Application of wavelet Transform in power Quality: A Review

pp. 353 - 360.
1997.
- Boris Bizjak, Peter Planinsic , Classification of Power Disturbances using Fuzzy Logic, Power Electronics and Motion Control Conference, EPE-PEMC,. 12th International 2006

Application of wavelet Transform in power Quality: A Review

- Valdomiro VEGΑ Automatic Power Quality Disturbance Classification Using Wavelet, Support Vector Machine And Artificial Neural Network, CIRED 20th International Conference on Electricity Distribution Praga, 8-11 June 2009
- N. Hamzah, Z. Zakaria A. Mohamed & A. Hussain, A Novel Software Tool For Power Quality Diagnosis, IEEE 8th International Conference on Computer and Information Technology Workshops. 8-11 July 2008

Index Terms

Computer Science

Power Systems
Keywords
Power quality wavelet transform De-noising multi-resolution adaptive filter AI
Techniques