Abstract

In the image processing, Images Enhancement with Brightness Preserving has many methods likes HE(Histogram Equalization), MHE(Multi-Histogram Equalization), IDBPHE(Image Dependent Brightness Preserving Histogram Equalization). We are proposed a novel methodology for the enhancement of images MRHRBFN (Multi-Resolution Histogram with Radial Bias Function Network). Enhancement process using pixel independent multi histogram method and Radial Bias Function Network. In process of our methodology image are decompose in terms of subbands. The sub band division perform by Curvelet transform. The Curvelet Transform divides two types of bands as higher band and lower band. The separation band of frequency generates a multiple matrix for input of radial bias Function Network. We have radial Bias function network work in low band data, because higher band data preserve brightness of image. The lower frequency matrix calculates bias and proceed weight factor when The lower value of frequency matrix regret reaches the mean value of given image. Finally we get better enhance image in comparison of multi histogram equalization.
References

- Soong-Der Chen and Abd. Rahman Ramli, Member IEEE “Contrast enhancement using recursive mean-separate histogram equalization for scalable.
- Qing Liu Yidong Yuan Xuemin Lin," Multi-resolution Algorithms for Building Spatial Histograms"
- Hasanul Kabir1, Abdullah Al-Wadud2, and Oksam Chae,"Brightness Preserving Image Contrast Enhancement Using Weighted Mixture of Globaland Local Transformation Function”,
- Adrian G. Bors, Department of computer Science university of York"Introduction of the Radial Basis Function (RBF) Networks”.
- Didar S. Sohi, S. S. Devgan,”Application to Enhance the Teaching and Understanding of Basic Image Processing Techniques”.
- Wuni xu, Lanxiang Zhong, Dingyuan Wang “Image Processing Based on Seamless Integration Technology Between Lab VIEW and MATLAB. International Conference on
Images Enhancement with Brightness Preserving using MRHRBFN

- Eric Wharton, Dr. Karen Panetta, Dr. Sos Agaian," human visual system based multi-histogram equalization for nonuniform illumination and shadow correction".

Index Terms

Computer Science Image Processing

Keywords