Abstract

This experimental study deals with the investigation of chaos during the regulation of output voltage of solar photovoltaic module. The Cuk converter is used as an interface between solar PV module and load, since the Cuk converter is the good choice for the maximum power point tracking (MPPT) circuits. The input voltage of the converter is controlled in order to regulate the operating point of the solar PV module. This paper proposes to design PID controller to obtain the input voltage of the converter is chaotic free and regulated one. The PID controller improves the transient response on the input voltage of the converter, avoids oscillation, overshoot, making easier the functioning of MPPT methods and ensures period -1 operation.

References

- Tse,K. K. , Ho,M. T. , Henry S. -H. , Chung. , Ron Hui,S. Y, "A Novel Maximum
Power Point Tracker for PV Panels Using Switching Frequency Modulation\cite{IEEEtransactions}; IEEE transactions on power electronics, vol. 17, no. 6, November 2002 pp. 980-989
- Henry Shu-Hung Chung, Tse, K. K., Ron Hui, S. Y., Mok, C. M., Ho, M. T., \"A Novel Maximum Power Point Tracking Technique for Solar Panels Using a SEPIC or Cuk Converter\"; IEEE transactions on power electronics, vol. 18, no. 3, May 2003, pp. 717-724
- Azadeh Safari and Saad Mekhilef, \"Simulation and Hardware Implementation of Incremental Conductance MPPT With Direct Control Method Using Cuk Converter\"; IEEE transactions on industrial electronics, vol. 58, no. 4, April 2011, pp. 1154-1161

Index Terms
- Computer Science
- Control Systems

Keywords
- Solar Pv Module
- Cuk Converter
- Chaos
- Pid Controller
- Voltage Regulation