Abstract

Given a graph $G = (V, E)$, a set $W \subseteq V$ is a resolving set if for each pair of distinct vertices $u, v \in V(G)$ there is a vertex $w \in W$ such that $d(\langle u, w \rangle) \neq d(\langle v, w \rangle)$. A resolving set containing a minimum number of vertices is called a minimum resolving set or a basis for G. The cardinality of a minimum resolving set is called the dimension of G and is denoted by $\text{dim}(G)$. A resolving set W is said to be a one size resolving set if the size of the subgraph induced by W is one, and a onefactor resolving set if W induces isolated edges (one regular graph). The minimum cardinality of these sets denoted $\text{o}(G)$ and $\text{onef}(G)$ are called one size and one factor resolving numbers respectively. In this paper we investigate these resolving parameters for enhanced hypercube networks.
Conditional Resolving Parameters on Enhanced Hypercube Networks

References

- S. Kwancharone, V. Saenpholphat, C. M. Da Fonseca, One size resolvability of graphs, Pr’e- Publica,c’oes do Departamento de Matem´atica, Universidade de Coimbra, (Preprint).
- B. Rajan, I. Rajasingh, P. Venugopal, M. Chris Monica, Minimum Metric Dimension of Illiac Networks, Ars Combin., (Accepted).
Index Terms

Computer Science
Applied Mathematics

Keywords

Resolving Set Basis One Size Resolving Set One Factor Resolving Set Enhanced Hypercube Networks