Abstract

Range and patterns of movement estimation is a crucial concern for clinicians in the diagnostic and functional assessment of patients with musculoskeletal disorder. To obtain a record of the degree of permanent impairment of an individual, Range-Of-Motion (ROM) measures are used. Currently, clinicians use all or any of numerous assessment instruments, a universal goniometer, an inclinometer or a tape measure to make these estimations. However, such tools appear to have major drawbacks in measuring ROM. Markerless vision-based human motion analysis can provide an inexpensive, non-obtrusive solution for range of joint motion measurement. This paper outlines the problem of measuring human joints movements using a computer vision system that supports the physiotherapist as a diagnosis tool to aid rehabilitation of joint movement disorders and its treatment plan.

References

- AnkurAgarwal, Bill Triggs, "Tracking articulated motion using a mixture of autoregressive models", in: Proceedings of the European Conference on Computer Vision
Analyzing and Measuring Human Joints Movements using a Computer Vision System

ECCV’04), Lecture Notes in Computer Science, vol. 3 (3024), May 2004, pp. 54–65.

- Park, W., “Data-Based Human Motion Simulation”, in Handbook of Digital Human Modelling, Taylor & Francis Group, LLC, 2009, p. 9.

- Computer aided kinematics and dynamics of mechanical systems, by E. J. Haug, Allyn and Bacon, Boston, 1989.

- Silva, M., Abe, Y., and Popovic, J., “Simulation of Human Motion Data Using Short-Horizon Model Predictive Control”, ACM Transactions on Graphics (TOG) -

Analyzing and Measuring Human Joints Movements using a Computer Vision System

313-336.

- Emily Horn, "Optimization-Based Dynamic Human Motion Prediction", University of Iowa, December 2005, (MS Thesis).
- Hyun-joon Chung, "Optimization-based dynamic prediction of 3D human running", Theses and Dissertations(2009), University of Iowa.

Index Terms

- Computer Science
- Pattern Recognition

Keywords

- Motion Analysis
- Range Of Motion
- Joint Motion
- Joint Movement Disorders
- Computer Vision