Abstract

This paper presents a comparative assessment of modern and intelligent controllers based on time response specification performance for a yaw control of an aircraft system. The dynamic modeling of yaw control system is performed and an autopilot that controls the yaw angle of an aircraft is designed using two controller design methods. The mathematical model of the system is derived by substituting the known parameters of a standard aircraft in standard equations. The transfer function for yaw control surface, i.e., rudder, is derived and two separate controllers, Linear Quadratic Controller (LQR) and Fuzzy Logic Controller (FLC) are designed for controlling the yaw angle. The effectiveness of each controllers are tested and verified using Matlab/Simulink platform. It is found from simulation, LQR controller give the best performance compared to fuzzy logic controller.

References

Aircraft Yaw Control System using LQR and Fuzzy Logic Controller

- Le Zhang1,2, Shaojie Bi2, Hong Yang2, "Fuzzy-PID Control Algorithm of the Helicopter Model Flight Attitude Control", 978-1-4244-5182-1/10/$26.00 © 2010 IEEE
- Zhichao Liu, Zouhair Choukri el haj, and Hongbo Shi, "Control Strategy Design Based on Fuzzy Logic and LQR for 3-DOF Helicopter Model", 978-1-4244-7050-1/10/$26.00 2011 IEEE
- Joshué Pérez, Vicente Milanés, and Enrique Onieva, "Cascade Architecture for Lateral Control in Autonomous Vehicles", IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 12, NO. 1, MARCH 2011
- www.wikipedia.org/wiki/Flight_control_system

Index Terms

Computer Science Fuzzy Systems

Keywords

Aircraft Flight Control Lateral Dynamics LQR Fuzzy Logic