Abstract

Many real world industrial applications involve finding a Hamiltonian path with minimum cost. Some instances that belong to this category are transportation routing problem, scan chain optimization and drilling problem in integrated circuit testing and production. Distributed learning automata, that is a general searching tool and is a solving tool for variety of NP-complete problems, together with 2-opt local search is used to solve the Traveling Salesman Problem (TSP). Two mechanisms named frequency-based pruning strategy (FBPS) and fixed-radius near neighbour (FRNN) 2-opt are used to reduce the high overhead incurred by 2-opt in the DLA algorithm proposed previously. Using FBPS only a subset of promising solutions are proposed to perform 2-opt. Invoking geometric structure, FRNN 2-opt implements efficient 2-opt in a permutation of TSP sequence. Proposed algorithms are tested on a set of TSP benchmark problems and the results show that they are able to reduce computational time, while maintaining the average solution quality at 0.62% from known optimal.

References

A Learning Automata based Algorithm for Solving Traveling Salesman Problem improved by Frequency-based Pruning

M. Alipour, "Solving Traveling Salesman Problem Using Distributed Learning Automata improved by 2-opt local search heuristic," Proceedings of First CSUT Conference on Computer, Communication and Information Technology, Computer Science Department, Tabriz University, Tabriz, Iran, pp. 256-264 Nov. 2011.

A Learning Automata based Algorithm for Solving Traveling Salesman Problem improved by Frequency-based Pruning

743–766.

Index Terms

Computer Science
Algorithms

Keywords

Traveling Salesman Problem
Distributed Learning Automata
Frequency-based Pruning Strategy
Fixed-radius Near Neighbour