Abstract

In the past decade, many studies focused on communication systems that translate brain activities into commands for a computer or other devices that called brain computer interface (BCI). In this study, we present a BCI system that achieves high classification accuracy with Neural Network (NN), Fisher Linear Discriminant Analysis (FLDA) and Bayesian Linear Discriminant Analysis (BLDA) for both disabled and able-bodies subjects. The system is based on the P300 evoked potential and is tested with four able-bodied and five severely disabled subjects. The effect of different electrode configurations on accuracy of machine learning Algorithms is tested and effect of other factors on classification accuracy in P300-based systems are discussed.

References

- H. Cecotti, A. Graser, "Convolutional neural network for P300 detection with application to brain- computer interfaces," IEEE Transaction on Pattern Analysis and
A Comparison among Classification Accuracy of Neural Network, FLDA and BLDA in P300-based BCI System

Machine Intelligence, 2011, Vol. 33, No. 3.

Index Terms

Computer Science Signal Processing

Keywords

Classification Event Related Potential P300 Evoked Potential Neural Network Bayesian’s Linear Discriminant Analysis.