Abstract

Reversible logic is an emerging research area. Interest in this field is motivated by its applications in several technologies involving low voltages and low power. Binary reversible circuits have been studied for their potential application in low-power CMOS design, quantum computation, nanotechnology, optical computation, etc. In this paper, a Reversible low power Decoder is proposed, newly proposed decoder compared with already proposed reversible decoder and the Conventional decoder. Circuits have been designed and synthesized using Rev Kit. The circuits are simulated in cadence too and Power consumption is calculated using cadence for all three designs. The performance analysis is verified using number of reversible gates, Garbage outputs, Transistor cost, Line cost power consumed and Quantum Cost. Improvement in the area of the proposed decoder as compared to the conventional one can be shown to be 33.33% and total power of 9.44%. Also an algorithm for NX2N decoder is given.

References

- C. H. Bennett, "Logical Reversibility of Computation", IBM Journal of
Research and Development, pp. 525-532, November 1973

- Yeong-Kang Lai; Yu-Fan Lai; Yin-Ruey Huang; Low power reversible variable length decoder for MPEG-4 based on fast codeword detection and table partition; Consumer Electronics (ISCE), 2011 IEEE 15th International Symposium, pp 631-634, August 2011.

- Sk Noor Mahammad, Siva Kumar Sastry Hari, Shyam Shroff and V Kamakoti; Constructing online testable circuits using reversible logic; VLSI-India. org, VSI pub, VDAT, 2006.

Index Terms

Computer Science
Integrated Circuits

Keywords
Feynman Gate Fredkin Gate Garbage Output Line Cost Quantum Cost Reversible Logic.