Abstract

Today, across a wide variety of areas, huge datasets are being collected and accumulated at a very high pace. The datasets addressed by individual applications are very often heterogeneous and geographically distributed, and are used by the communities of users, which are often large and also geographically scattered. Major challenges are involved in the efficient and reliable storage, fast processing, cleaning and extracting descriptive and predictive knowledge from this great mass of data. In this paper, we describe architecture of single point interface for data analysis meant for different applications of wireless sensor networks. This architecture will help the user extract the exact data required and view the output that is actually needed by him/her. The paper is divided into five sections, section I introduces wireless sensor network, section II lists various applications of WSN, section III contains the sample data set of different applications, section IV gives the proposed solution for performing data analysis and proposed architecture followed by conclusion in section V.

References

- Abhiman Hande, Todd Polk, William Walker, Dinesh Bhatia, "Self-Powered
- Kae Hsiang Kwong, Tsung Ta Wu, Hock Guan Goh, Bruce Stephen, Michael Gilroy, Craig Michie, and Ivan Andonovic, Centre for Intelligent Dynamic Communications, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom, Wireless Sensor Networks in Agriculture: Cattle Monitoring for Farming Industries, PIERS Online, 2009, Vol. 5, 1, pp. 31-35. ISSN: 1931-7360.
- Michael Winkler, Klaus-Dieter Tuchs, Kester Hughes, and Graeme Barclay.

Index Terms

Computer Science Wireless

Keywords

Wsn (wireless Sensor Network) Data Mining Xml (extensible Markup Language)
Data Warehouse

Dataset