Abstract

Although Ant Colony Systems (ACS) have gained much attention in last two decades but slow execution and convergence speed are still two challenges for these meta-heuristic algorithms. Many parallel implementations have been proposed for faster execution. However, most of available implementations use coarse-grained synchronization mechanisms that are not efficient and scalable. In this work, we have taken a fine-grained (ant-level) approach that is more efficient and scalable. We have used traveling salesman problem as a test case and have presented a parallel fine-grained implementation for shared-memory multi-core systems. Our experimental results show that our proposed parallel implementation can achieve considerably higher speedup values on modern multicore processors.

References

- P. Delisle, M. Krajecki, M. Gravel, and C. Gagné, "Parallel implementation of an ant colony optimization metaheuristic with OpenMP," in Proceedings of the 3rd European Workshop on OpenMP (EWOMP's01), Barcelona, Spain, 2001.
Fine-grained Parallel Ant Colony System for Shared-Memory Architectures

Index Terms

Computer Science Algorithms

Keywords

Ant Colony System Parallel Computing Traveling Salesman Problem Shared Memory System