A RBRM Approach for Virtual Desktop Cloud Computing

Abstract

The speciality of virtual desktop cloud computing is that user applications are executed in virtual desktops on remote servers. Resource management and resource utilization are very much significant in the area of virtual desktop cloud computing. Handling a large amount of clients in most efficient manner is the main challenge in this field. This is because we have to ensure maximum resource utilization along with user data confidentiality, customer satisfaction, scalability, minimum SLA violation etc. Assigning too many users to one server may cause overloaded condition and which will lead to customer dissatisfaction. Assigning too little load will result in high investment cost. So we have taken in to consideration these two situations also. Here the proposed Rule Based Resource Management (RBRM) scheme assures the above mentioned parameters like minimum SLA violation. The concept of virtual desktop cloud computing is extended to a hybrid cloud environment. This is because to make the private cloud scalable. And priorities are assigned to user requests in order to maintain their confidentiality. The results of the paper indicate that by applying this RBRM scheme to the already existing overbooking mechanism will improve the performance of the system with significant reduction in SLA violation.
A RBRM Approach for Virtual Desktop Cloud Computing


- Jiang Dejun, Guillaume Pierre, Chi-Hung Chi, "Resource Provisioning of Web Applications in Heterogeneous Clouds".


- Nilabja Roy, Abhishek Dubey and Aniruddha Gokhale, "Efficient Autoscaling in the Cloud using Predictive Models for Workload Forecasting".


- Rajkumar Buyya, Rajiv Ranjan, Rodrigo N. Calheiros, "Modeling and Simulation of Scalable Cloud Computing Environments and the CloudSim Toolkit: Challenges and Opportunities".

- Feng Huang, 2006, "A Selective Approach to Bandwidth Overbooking".


Security Communications in Computer and Information Science Volume 345, pp 113-120.

**Index Terms**
- Computer Science
- Information Sciences

**Keywords**
- Virtual desktop cloud computing
- Resource management
- Resource Overbooking
- Rule Based Resource Management
- SLA violation