Abstract

This paper presents an educational data mining model for predicting student performance in programming courses. Identifying variables that predict student programming performance may help educators. These variables are influenced by various factors. The study engages factors like students' mathematical background, programming aptitude, problem solving skills, gender, prior experience, high school mathematics grade, locality, previous computer programming experience, and e learning usage. The proposed model includes three phases; data preprocessing, attribute selection and rule extraction algorithm.

References

An Educational Data Mining Model for Predicting Student Performance in Programming Course

- Murat Koklu_, Humar Kahramanli and Novruz Allahverdi, &quot;A New Approach To Classification Rule Extraction Problem by the Real Value Coding&quot; , International Journal of Innovative Computing, Information and Control Volume 8, Number 9, September 2012
- R. Nayak, &quot;Generating rules with predicates, terms and variables from the pruned neural networks&quot; , Neural Networks, vol. 22, no. 4, pp. 405-414, 2009.
- KOJI FUJIMOTO* and SAMPEI NAKABAYASHI, &quot;Applying GMDH algorithm to extract rules from examples&quot; , Systems Analysis Modelling Simulation Vol. 43, No. 10, October 2003, pp. 1311-1319.
- S. Charles, L. Arockiam, and V. Kumar, &quot;Deriving Association between learning behavior and programming skills&quot; , Computer Networks and Information Technologies Communications in Computer and Information Science, Volume 142, 2011, pp 96-103.
- Luis de-la-Fuente-Valentín, Abelardo Pardo, Carlos Delgado Kloos, &quot;Addressing
drop-out and sustained effort issues with large practical groups using an automated delivery and assessment system, Computers & Education 61 (2013) 33–42.

- Jens Bennedsen, Michael E. Caspersen, &quot;Failure rates in introductory programming&quot;, ACM SIGCSE Bulletin, Volume 39 Issue 2, June 2007, Pages 32-36
- Susan Wiedenbeck, Deborah LaBelle, and Vennila N. R. Kain, &quot;Factors Affecting Course Outcomes in Introductory Programming &apos;&apos; 16th Workshop of the Psychology of Programming Interest Group. Carlow, Ireland, April 2004.
- A. T. Chamillard, &quot;Using Student Performance Predictions in a Computer Science Curriculum&quot; ITiCSE&apos;06, June 26–28, 2006, Bologna, Italy.
- Sally Fincher et al., &quot;Programmed to succeed?: A multi-national, multi-institutional study of introductory programming courses&quot;, Technical Report No. 1-05, University of Kent, April 2005.
- Markku Tukiainen and Eero Mönkkönen, &quot;Programming aptitude testing as a prediction of learning to program&quot;, 14th Workshop of the Psychology of Programming Interest Group, Brunel University, June 2002.
- Valerie J. Shute, &quot;Who is likely to acquire programming skills?&quot;, Educational computing research, Vol. 7(1), 1991, pp. 1-24.
- Y. B. -D. Kolikant, S. Pollack, &quot;Improving mathematically oriented programming skills in computer science studies&quot;, fie, vol. 1, pp. T1G3-8, 32nd Annual Frontiers in Education (FIE&apos;02), 2002.
- Doane, William E. J, &quot;Predicting student performance in introductory computer programming courses&quot;, State University of New York at Albany, ProQuest Dissertations and Theses, 2008.
- Stanley TenEyck Schuyler, &quot;Using Problematizing Ability to Predict Student
performance In A First Course In Computer Programming”, Robert Morris University, Copyright © Stanley TenEyck Schuyler 2008.

Index Terms

Computer Science  Artificial Intelligence

Keywords

Data Mining  Student Performance  Programming Course  Rule Extraction