Abstract

This paper describes the development of a fuzzy gain scheduling scheme of PID controllers for three tank process. This paper presents the controllers for three tank multi loop system using fuzzy gain scheduling. The application of fuzzy logic controller (FLC) appears to be encouraging in the sense that it is robust in disturbance rejection under various conditions. The controller designed by FLC technique is based on the choice of Fuzzy rules and Reasoning is used to determine the controller parameters based on the error signal and its first difference. Simulation results show that better control performance can be achieved in comparison with conventional-PI controllers. The simulation result of the process is carried out by using MATLAB simulink software.

References

- M. Zhaung and D. P. Atherton (1994), "PID controller design for TITO
Fuzzy Gain Scheduling of PID Controller for a MIMO Process

- S. Skogestad, I. Postlewaite (1996), "Multivariable Feedback Control Analysis
 and Design," John Wiley & Sons Chichester
- K Astrom and T. Hagglund (1995), "PID Controllers: Theory Design and
- L. Kovács: Classical and Modern Multivariable Control Designing Methods of the Three
 Tank System, Periodica Polytechnica--Transactions on Automatic Control and Computer
- J. J. Buckley and H. Ying. Fuzzy controller theory: Limit theorems for linear fuzzy
- P. J. Gawthrop and P. E. Nomikos, "Automatic tuning of commercial PID
 controllers for single-loop and multiloop applications," IEEE Control Syst. Mag. Vol. 10,
- C. C. Hang, "The choice of controller zeros," IEEE Control Syst. Mag., vol. 9, pp. 72-75,
 1989.
- C. C. Hang, K. J. Astrom, and W. K. Ho, "Refinements of the Ziegler – Nichols
- T. Iwasaki and A. Morita, "Fuzzy control for PID controller with model
 classification," in Proc. NAFIPSapos;90 Toronto, Canada, June 6-8, 1990, pp. 90-93.
- T. Kitamori, "A method of control system design based upon partial knowledge
 Japanese).
 1987.
- C. G. Nesler, "Experiences in applying adaptive control to thermal processes in
- T. J. Procyk and E. H. Mamdani, "A linguistic self organizing process
- M. Sugeno, ed., Industrial Applications of Fuzzy Control. Amsterdam, The Netherlands:
- T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to
 1985.
- Venkata Ramesh. Edara, B. Amarendra Reddy, Srikanth Monangi and M. Vimala,
 "Analytical Structures for Fuzzy PID Controllers and Applications," International
 Journal of Electrical Engineering & Technology (IJEEET), Volume 1, Issue 1, 2010, pp. 1 - 17,
 ISSN Print : 0976 6545, ISSN Online: 0976-6553.
Index Terms

Computer Science
Fuzzy Systems

Keywords

FLC three tank multi-loop